scholarly journals Diurnal aerosol variations do affect daily averaged radiative forcing under heavy aerosol loading observed in Hefei, China

2015 ◽  
Vol 8 (7) ◽  
pp. 2901-2907 ◽  
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. A strong diurnal variation of aerosol has been observed in many heavily polluted regions in China. This variation could affect the direct aerosol radiative forcing (DARF) evaluation if the daily averaged value is used as normal rather than the time-resolved values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24-h averaged DARF when daily averaged optical properties are used to retrieve this quantity. The DARF errors varying from −7.6 to 15.6 W m−2 absolutely and from 0.1 to 28.5 % relatively were found between the calculations using daily average aerosol properties, and those using time-resolved aerosol observations. These errors increase with increasing daily aerosol optical depth (AOD) and decreasing daily single-scattering albedo (SSA), indicating that the high temporal resolution DARF data set should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading conditions for regional campaign studies. We also found that statistical errors (0.3 W m−2 absolutely and 11.8 % relatively) will be less, which means that the effect of using the daily averaged DARF can be weakened by using a long-term observational data set.

2015 ◽  
Vol 8 (2) ◽  
pp. 2123-2141
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. Strong diurnal variation of aerosol has been observed in many heavy polluted regions in China. This variation could alter the distribution of the direct aerosol radiative forcing (DARF) during the whole daytime that could increase the uncertainty of the normally used averaged values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24 h averaged DARF when daily averaged optical properties are used to retrieve this quantity. Though there is a high temporal sampling of aerosol properties to be used for calculation of daily averaged ones, statistical errors (up to 5.3 Wm−2 absolutely and 14.6% relatively) in the computed DARF still occur. These errors increase with increasing daily aerosol optical depth (AOD) is also found which indicated the high temporal resolution DARF dataset should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading condition.


2020 ◽  
Vol 13 (10) ◽  
pp. 5569-5593
Author(s):  
Katta Vijayakumar ◽  
Panuganti C. S. Devara ◽  
Sunil M. Sonbawne ◽  
David M. Giles ◽  
Brent N. Holben ◽  
...  

Abstract. The AErosol RObotic NETwork (AERONET) is the most developed ground-based network for aerosol remote sensing and has been playing a significant role not only in monitoring air quality for protecting human health but also in assessing the radiative budget of our planet Earth. In this paper, we report the direct-Sun and inversion products, comprising of spectral variation of aerosol optical depth (AOD), associated Ångström exponent (AE), fine- and coarse-mode aerosol fractions, aerosol size distribution (ASD), refractive index (RI), asymmetry parameter (AP), single scattering albedo (SSA), aerosol radiative forcing (ARF) and columnar concentration of gas constituents such as water vapor (H2O), obtained from a Cimel Sun–sky radiometer, functioning in Pune, India, under the AERONET program since October 2004. These long-term measurements carried out from 2005 to 2015 could serve as an urban aerosol optical long-term average or climatology. The AOD long-term variations at all wavelengths, considered in the study, exhibited an increasing trend, implying year-to-year enhancement in aerosol loading. The mean seasonal variations in AOD from cloud-free days indicated greater values during the monsoon season, revealing dominance of hygroscopic aerosol particles over the station. Contribution by different aerosol types to AOD has also been deduced and discussed, and dominance of a mixed type of aerosols (44.85 %) found, followed by combination of biomass burning and urban industrial aerosols (22.57 %) compared to other types of aerosols during the study period. The long-term datasets, derived aerosol and trace gas products play a significant role in understanding aerosol climate forcing, trends and evaluation of regional air pollution and validation of aerosol transport models over the study region.


2019 ◽  
Author(s):  
Katta Vijayakumar ◽  
Panuganti C. S. Devara ◽  
Sunil M. Sonbawne ◽  
David M. Giles ◽  
Brent N. Holben ◽  
...  

Abstract. The AErosol RObotic NETwork (AERONET) is the most developed ground-based network for aerosol remote-sensing and has been playing a significant role not only in monitoring air quality for protecting human health but also in assessing the radiative budget of our planet Earth. In this paper, we report the direct sun and inversion products, comprising of spectral variation of Aerosol Optical Depth (AOD), associated Ångström Exponent (AE), fine- and coarse-mode aerosol fractions, Aerosol Size Distribution (ASD), Refractive Index (RI), Asymmetry Parameter (AP), Single Scattering Albedo (SSA), Aerosol Radiative Forcing (ARF), and columnar concentration of gas constituents such as water vapor, ozone and nitrogen peroxide, obtained from a Cimel sun-sky radiometer, functioning at Pune, India, under the AERONET program since October 2004. These long-term measurements carried out from 2005 to 2015 could serve as an urban aerosol optical long-term average or climatology The AOD long-term variations at all wavelengths, considered in the study, exhibited increasing trend, implying year-to-year enhancement in aerosol loading. The mean seasonal variations in AOD from cloud-free days indicated greater values during monsoon, revealing dominance of hygroscopic aerosol particles over the station. Contribution by different aerosol types to AOD has also been deduced, discussed and found dominance of mixed type of aerosols (43.79 %), followed by combination of biomass burning and urban industrial aerosols (22.03 %) compared to other types of aerosols during the study period. The long-term data sets, derived aerosol and trace gas products play a significant role in understanding aerosol climate forcing, trends, and evaluation of regional air pollution and validation of aerosol transport models over the study region.


2018 ◽  
Author(s):  
Brunna Penna ◽  
Dirceu Herdies ◽  
Simone Costa

Abstract. Sixteen years of analysis of clear-sky direct aerosol radiative forcing is presented for the Amazon region, with calculations of AERONET network, MODIS sensor and MERRA-2 reanalysis data. The results showed that MERRA-2 reanalysis is an excellent tool for calculating and providing the spatial distribution of aerosol direct radiative forcing. In addition, the difference between considering the reference state of the atmosphere without aerosol loading and with natural aerosol to obtain the aerosol direct radiative forcing is discussed. During the dry season, the monthly average direct forcing at the top of atmosphere varied from −9.60 to −4.20 Wm−2, and at the surface, it varied from −29.81 to −9.24 Wm−2, according to MERRA-2 reanalysis data and the reference state of atmosphere without aerosol loading. Already with the state of reference being the natural aerosols, the average direct forcing at the top of atmosphere varied from −5.15 to −1.18 Wm−2, and at the surface, it varied from −21.28 to −5.25 Wm−2; this difference was associated with the absorption of aerosols.


2018 ◽  
Vol 18 (15) ◽  
pp. 11149-11169 ◽  
Author(s):  
Johan Friberg ◽  
Bengt G. Martinsson ◽  
Sandra M. Andersson ◽  
Oscar S. Sandvik

Abstract. We present a study on the stratospheric aerosol load during 2006–2015, discuss the influence from volcanism and other sources, and reconstruct an aerosol optical depth (AOD) data set in a resolution of 1∘ latitudinally and 8 days timewise. The purpose is to include the “entire” stratosphere, from the tropopause to the almost particle-free altitudes of the midstratosphere. A dynamic tropopause of 1.5 PVU was used, since it enclosed almost all of the volcanic signals in the CALIOP data set. The data were successfully cleaned from polar stratospheric clouds using a temperature threshold of 195 K. Furthermore, a method was developed to correct data when the CALIOP laser beam was strongly attenuated by volcanic aerosol, preventing a negative bias in the AOD data set. Tropospheric influence, likely from upwelling dust, was found in the extratropical transition layer in spring. Eruptions of both extratropical and tropical volcanoes that injected aerosol into the stratosphere impacted the stratospheric aerosol load for up to a year if their clouds reached lower than 20 km altitude. Deeper-reaching tropical injections rose in the tropical pipe and impacted it for several years. Our AODs mostly compare well to other long-term studies of the stratospheric AOD. Over the years 2006–2015, volcanic eruptions increased the stratospheric AOD on average by ∼40 %. In absolute numbers the stratospheric AOD and radiative forcing amounted to 0.008 and −0.2 W m−2, respectively.


2019 ◽  
Vol 99 ◽  
pp. 04006
Author(s):  
Khan Alam ◽  
Maqbool Ahmad

Dust storms deteriorated air quality over the Gulf Region, Iraq, Iran, and Pakistan during the last decade. The purpose of this study is to investigate the changes in aerosol optical and radiative properties during a dust episode over the various locations in the Middle East and Southwest Asia using data from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) during March, 2012. Maximum aerosol optical depth (AOD) values were found to be 2.18, 1.30, 4.33 and 1.80 over Lahore, Kanpur, Kaust, and Mezaira, respectively. The Volume Size Distributions, Single Scattering Albedo, Refractive Index, and Asymmetry parameter indicated that coarse mode aerosols were predominant relative to fine mode aerosols during the dust event. The average shortwave aerosol radiative forcing (ARF) values at the earth’s surface were found to be -96±45 W m-2, -86±22 W m-2, -77±51 W m-2, and -75±40 W m-2, over Lahore, Kanpur, Kaust and Mezaira, respectively. Likewise, the averaged ARF values over Lahore, Kanpur, Kaust and Mezaira at the top of the atmosphere (TOA) were found to be -45±25 W m-2, -27±9 W m-2, -41±29 W m-2, and -75±40 W m-2, respectively. The large differences between surface and TOA forcing produced significant heating within the atmosphere.


2010 ◽  
Vol 23 (19) ◽  
pp. 5288-5293 ◽  
Author(s):  
Norman G. Loeb ◽  
Wenying Su

Abstract To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5–1.0 W m−2, a factor of 2–4 greater than the value cited in the Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear-sky conditions, even though the global mean clear-sky DARF is more than twice as large as the all-sky DARF.


2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


Sign in / Sign up

Export Citation Format

Share Document