scholarly journals Diurnal aerosol variations do affect daily averaged radiative forcing under heavy aerosol loading observed in Hefei, China

2015 ◽  
Vol 8 (2) ◽  
pp. 2123-2141
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. Strong diurnal variation of aerosol has been observed in many heavy polluted regions in China. This variation could alter the distribution of the direct aerosol radiative forcing (DARF) during the whole daytime that could increase the uncertainty of the normally used averaged values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24 h averaged DARF when daily averaged optical properties are used to retrieve this quantity. Though there is a high temporal sampling of aerosol properties to be used for calculation of daily averaged ones, statistical errors (up to 5.3 Wm−2 absolutely and 14.6% relatively) in the computed DARF still occur. These errors increase with increasing daily aerosol optical depth (AOD) is also found which indicated the high temporal resolution DARF dataset should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading condition.

2015 ◽  
Vol 8 (7) ◽  
pp. 2901-2907 ◽  
Author(s):  
Z. Wang ◽  
D. Liu ◽  
Y. Wang ◽  
Z. Wang ◽  
G. Shi

Abstract. A strong diurnal variation of aerosol has been observed in many heavily polluted regions in China. This variation could affect the direct aerosol radiative forcing (DARF) evaluation if the daily averaged value is used as normal rather than the time-resolved values. To quantify the effect of using the daily averaged DARF, 196 days of high temporal resolution ground-based data collected in SKYNET Hefei site during the period from 2007 to 2013 is used to perform an assessment. We demonstrate that strong diurnal changes of heavy aerosol loading have an impact on the 24-h averaged DARF when daily averaged optical properties are used to retrieve this quantity. The DARF errors varying from −7.6 to 15.6 W m−2 absolutely and from 0.1 to 28.5 % relatively were found between the calculations using daily average aerosol properties, and those using time-resolved aerosol observations. These errors increase with increasing daily aerosol optical depth (AOD) and decreasing daily single-scattering albedo (SSA), indicating that the high temporal resolution DARF data set should be used in the model instead of the normal daily-averaged one, especially under heavy aerosol loading conditions for regional campaign studies. We also found that statistical errors (0.3 W m−2 absolutely and 11.8 % relatively) will be less, which means that the effect of using the daily averaged DARF can be weakened by using a long-term observational data set.


2010 ◽  
Vol 23 (19) ◽  
pp. 5288-5293 ◽  
Author(s):  
Norman G. Loeb ◽  
Wenying Su

Abstract To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5–1.0 W m−2, a factor of 2–4 greater than the value cited in the Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear-sky conditions, even though the global mean clear-sky DARF is more than twice as large as the all-sky DARF.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Deepti Sharma ◽  
Darshan Singh ◽  
D. G. Kaskaoutis

Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE) have been identified during the study period with average values of Aqua-MODIS AOD550and Microtops-II AOD500over Patiala as1.00±0.51and0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF) over Patiala. The ARF at surface (SRF) and top of atmosphere (TOA) ranges from ∼−50 to −100 Wm−2and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1at SRF and −14 Wm−2AOD−1at TOA. High values of ARF in the atmosphere (ATM), ranging between ∼+40 Wm−2and +80.0 Wm−2during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.


2012 ◽  
Vol 12 (21) ◽  
pp. 10331-10351 ◽  
Author(s):  
A. Valenzuela ◽  
F. J. Olmo ◽  
H. Lyamani ◽  
M. Antón ◽  
A. Quirantes ◽  
...  

Abstract. The daily (24 h) averages of the aerosol radiative forcing (ARF) at the surface and the top of the atmosphere (TOA) were calculated during desert dust events over Granada (southeastern Spain) from 2005 to 2010. A radiative transfer model (SBDART) was utilized to simulate the solar irradiance values (0.31–2.8 μm) at the surface and TOA, using as input aerosol properties retrieved from CIMEL sun photometer measurements via an inversion methodology that uses the sky radiance measurements in principal plane configuration and a spheroid particle shape approximation. This inversion methodology was checked by means of simulated data from aerosol models, and the derived aerosol properties were satisfactorily compared against well-known AERONET products. Good agreement was found over a common spectral interval (0.2–4.0 μm) between the simulated SBDART global irradiances at surface and those provided by AERONET. In addition, simulated SBDART solar global irradiances at the surface have been successfully validated against CM-11 pyranometer measurements. The comparison indicates that the radiative transfer model slightly overestimates (mean bias of 3%) the experimental solar global irradiance. These results show that the aerosol optical properties used to estimate ARF represent appropriately the aerosol properties observed during desert dust outbreak over the study area. The ARF mean monthly values computed during desert dust events ranged from −13 ± 8 W m−2 to −34 ± 15 W m−2 at surface, from −4 ± 3 W m−2 to −13 ± 7 W m−2 at TOA and from +6 ± 4 to +21 ± 12 W m−2 in the atmosphere. We have checked if the differences found in aerosol optical properties among desert dust sectors translate to differences in ARF. The mean ARF at surface (TOA) were −20 ± 12 (−5 ± 5) W m−2, −21 ± 9 (−7 ± 5) W m−2 and −18 ± 9 (−6 ± 5) W m−2 for sector A (northern Morocco; northwestern Algeria), sector B (western Sahara, northwestern Mauritania and southwestern Algeria), and sector C (eastern Algeria, Tunisia), respectively. The Kolmogorov-Smirnov statistical test revealed that daily {ARF} values at TOA for sector A were significantly different from the other two sectors, likely as a result of the lower values of single scattering albedo obtained for sector A. The mean values of aerosol radiative forcing efficiency at surface (TOA) were −74 ± 12 W m−2 (−17 ± 7 W m−2) for sector A, −70 ± 14 W m−2 (−20 ± 9 W m−2) for sector B, and −65 ± 16 W m−2 (−22 ± 10 W m−2) for sector C, and thus comparable between the three sectors in all seasons.


2019 ◽  
Vol 46 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
S. T. Turnock ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
M. Dalvi ◽  
F. M. O'Connor ◽  
...  

2018 ◽  
Author(s):  
Brunna Penna ◽  
Dirceu Herdies ◽  
Simone Costa

Abstract. Sixteen years of analysis of clear-sky direct aerosol radiative forcing is presented for the Amazon region, with calculations of AERONET network, MODIS sensor and MERRA-2 reanalysis data. The results showed that MERRA-2 reanalysis is an excellent tool for calculating and providing the spatial distribution of aerosol direct radiative forcing. In addition, the difference between considering the reference state of the atmosphere without aerosol loading and with natural aerosol to obtain the aerosol direct radiative forcing is discussed. During the dry season, the monthly average direct forcing at the top of atmosphere varied from −9.60 to −4.20 Wm−2, and at the surface, it varied from −29.81 to −9.24 Wm−2, according to MERRA-2 reanalysis data and the reference state of atmosphere without aerosol loading. Already with the state of reference being the natural aerosols, the average direct forcing at the top of atmosphere varied from −5.15 to −1.18 Wm−2, and at the surface, it varied from −21.28 to −5.25 Wm−2; this difference was associated with the absorption of aerosols.


Sign in / Sign up

Export Citation Format

Share Document