scholarly journals Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance

2014 ◽  
Vol 7 (3) ◽  
pp. 2631-2661 ◽  
Author(s):  
C. Y. Lin ◽  
T. Matsuo ◽  
J. Y. Liu ◽  
C. H. Lin ◽  
H. F. Tsai ◽  
...  

Abstract. Ionospheric data assimilation is a powerful approach to reconstruct the 3-D distribution of the ionospheric electron density from various types of observations. We present a data assimilation model for the ionosphere, based on the Gauss–Markov Kalman filter with the International Reference Ionosphere (IRI) as the background model, to assimilate two different types of total electron content (TEC) observations from ground-based GPS and space-based FORMOSAT-3/COSMIC (F3/C) radio occultation. Covariance models for the background model error and observational error play important roles in data assimilation. The objective of this study is to investigate impacts of stationary (location-independent) and non-stationary (location-dependent) classes of the background model error covariance on the quality of assimilation analyses. Location-dependent correlations are modeled using empirical orthogonal functions computed from an ensemble of the IRI outputs, while location-independent correlations are modeled using a Gaussian function. Observing System Simulation Experiments suggest that assimilation of TEC data facilitated by the location-dependent background model error covariance yields considerably higher quality assimilation analyses. Results from assimilation of real ground-based GPS and F3/C radio occultation observations over the continental United States are presented as TEC and electron density profiles. Validation with the Millstone Hill incoherent scatter radar data and comparison with the Abel inversion results are also presented. Our new ionospheric data assimilation model that employs the location-dependent background model error covariance outperforms the earlier assimilation model with the location-independent background model error covariance, and can reconstruct the 3-D ionospheric electron density distribution satisfactorily from both ground- and space-based GPS observations.

2015 ◽  
Vol 8 (1) ◽  
pp. 171-182 ◽  
Author(s):  
C. Y. Lin ◽  
T. Matsuo ◽  
J. Y. Liu ◽  
C. H. Lin ◽  
H. F. Tsai ◽  
...  

Abstract. Ionospheric data assimilation is a powerful approach to reconstruct the 3-D distribution of the ionospheric electron density from various types of observations. We present a data assimilation model for the ionosphere, based on the Gauss–Markov Kalman filter with the International Reference Ionosphere (IRI) as the background model, to assimilate two different types of slant total electron content (TEC) observations from ground-based GPS and space-based FORMOSAT-3/COSMIC (F3/C) radio occultation. Covariance models for the background model error and observational error play important roles in data assimilation. The objective of this study is to investigate impacts of stationary (location-independent) and non-stationary (location-dependent) classes of the background model error covariance on the quality of assimilation analyses. Location-dependent correlations are modeled using empirical orthogonal functions computed from an ensemble of the IRI outputs, while location-independent correlations are modeled using a Gaussian function. Observing system simulation experiments suggest that assimilation of slant TEC data facilitated by the location-dependent background model error covariance yields considerably higher quality assimilation analyses. Results from assimilation of real ground-based GPS and F3/C radio occultation observations over the continental United States are presented as TEC and electron density profiles. Validation with the Millstone Hill incoherent scatter radar data and comparison with the Abel inversion results are also presented. Our new ionospheric data assimilation model that employs the location-dependent background model error covariance outperforms the earlier assimilation model with the location-independent background model error covariance, and can reconstruct the 3-D ionospheric electron density distribution satisfactorily from both ground- and space-based GPS observations.


2011 ◽  
Vol 4 (12) ◽  
pp. 2837-2850 ◽  
Author(s):  
A. J. Mannucci ◽  
C. O. Ao ◽  
X. Pi ◽  
B. A. Iijima

Abstract. We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO) retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km) tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.


GPS Solutions ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 1125-1137 ◽  
Author(s):  
Chengli She ◽  
Weixing Wan ◽  
Xinan Yue ◽  
Bo Xiong ◽  
You Yu ◽  
...  

2011 ◽  
Vol 21 (12) ◽  
pp. 3619-3626 ◽  
Author(s):  
ALBERTO CARRASSI ◽  
STÉPHANE VANNITSEM

In this paper, a method to account for model error due to unresolved scales in sequential data assimilation, is proposed. An equation for the model error covariance required in the extended Kalman filter update is derived along with an approximation suitable for application with large scale dynamics typical in environmental modeling. This approach is tested in the context of a low order chaotic dynamical system. The results show that the filter skill is significantly improved by implementing the proposed scheme for the treatment of the unresolved scales.


2016 ◽  
Vol 9 (8) ◽  
pp. 2893-2908 ◽  
Author(s):  
Sergey Skachko ◽  
Richard Ménard ◽  
Quentin Errera ◽  
Yves Christophe ◽  
Simon Chabrillat

Abstract. We compare two optimized chemical data assimilation systems, one based on the ensemble Kalman filter (EnKF) and the other based on four-dimensional variational (4D-Var) data assimilation, using a comprehensive stratospheric chemistry transport model (CTM). This work is an extension of the Belgian Assimilation System for Chemical ObsErvations (BASCOE), initially designed to work with a 4D-Var data assimilation. A strict comparison of both methods in the case of chemical tracer transport was done in a previous study and indicated that both methods provide essentially similar results. In the present work, we assimilate observations of ozone, HCl, HNO3, H2O and N2O from EOS Aura-MLS data into the BASCOE CTM with a full description of stratospheric chemistry. Two new issues related to the use of the full chemistry model with EnKF are taken into account. One issue is a large number of error variance parameters that need to be optimized. We estimate an observation error variance parameter as a function of pressure level for each observed species using the Desroziers method. For comparison purposes, we apply the same estimate procedure in the 4D-Var data assimilation, where both scale factors of the background and observation error covariance matrices are estimated using the Desroziers method. However, in EnKF the background error covariance is modelled using the full chemistry model and a model error term which is tuned using an adjustable parameter. We found that it is adequate to have the same value of this parameter based on the chemical tracer formulation that is applied for all observed species. This is an indication that the main source of model error in chemical transport model is due to the transport. The second issue in EnKF with comprehensive atmospheric chemistry models is the noise in the cross-covariance between species that occurs when species are weakly chemically related at the same location. These errors need to be filtered out in addition to a localization based on distance. The performance of two data assimilation methods was assessed through an 8-month long assimilation of limb sounding observations from EOS Aura MLS. This paper discusses the differences in results and their relation to stratospheric chemical processes. Generally speaking, EnKF and 4D-Var provide results of comparable quality but differ substantially in the presence of model error or observation biases. If the erroneous chemical modelling is associated with moderately fast chemical processes, but whose lifetimes are longer than the model time step, then EnKF performs better, while 4D-Var develops spurious increments in the chemically related species. If, however, the observation biases are significant, then 4D-Var is more robust and is able to reject erroneous observations while EnKF does not.


Sign in / Sign up

Export Citation Format

Share Document