scholarly journals Characterisation of an inlet pre-injector laser induced fluorescence instrument for the measurement of ambient hydroxyl radicals

2014 ◽  
Vol 7 (1) ◽  
pp. 819-858 ◽  
Author(s):  
A. Novelli ◽  
K. Hens ◽  
C. Tatum Ernest ◽  
D. Kubistin ◽  
E. Regelin ◽  
...  

Abstract. Ambient measurements of hydroxyl radicals (OH) are challenging due to a high reactivity and consequently low concentration. The importance of OH as an atmospheric oxidant has resulted in a sustained effort leading to the development of a number of analytical techniques. Recent work has indicated that the laser-induced fluorescence of the OH molecules method based on the fluorescence assay by gas expansion technique (LIF-FAGE) for the measurement of atmospheric OH in some environments may be influenced by artificial OH generated within the instrument, and a chemical method to remove this interference was implemented in a LIF-FAGE system by Mao et al. (2012). We have applied this method to our LIF-FAGE HORUS (HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy) system, and developed and deployed an inlet pre-injector (IPI) to determine the chemical zero level in the instrument via scavenging the ambient OH radical. We describe and characterise this technique in addition to its application at field sites in forested locations in Finland, Spain, and Germany. Ambient measurements show that OH generated within the HORUS instrument is a non-negligible fraction of the total OH signal, which can comprise 30% to 80% during the day and 60% to 100% during the night. The contribution of the background OH varied greatly between measurement sites and was likely related to the type and concentration of volatile organic compounds (VOCs) present at each particular location. Two inter-comparisons in contrasting environments between the HORUS instrument and two different chemical ionisation mass spectrometers (CIMS) are described to demonstrate the efficacy of the inlet-pre-injector and the necessity of the chemical zeroing method in such environments.

2014 ◽  
Vol 7 (10) ◽  
pp. 3413-3430 ◽  
Author(s):  
A. Novelli ◽  
K. Hens ◽  
C. Tatum Ernest ◽  
D. Kubistin ◽  
E. Regelin ◽  
...  

Abstract. Atmospheric measurements of hydroxyl radicals (OH) are challenging due to a high reactivity and consequently low concentration. The importance of OH as an atmospheric oxidant has motivated a sustained effort leading to the development of a number of highly sensitive analytical techniques. Recent work has indicated that the laser-induced fluorescence of the OH molecules method based on the fluorescence assay by gas expansion technique (LIF-FAGE) for the measurement of atmospheric OH in some environments may be influenced by artificial OH generated within the instrument, and a chemical method to remove this interference was implemented in a LIF-FAGE system by Mao et al. (2012). While it is not clear whether other LIF-FAGE instruments suffer from the same interference, we have applied this method to our LIF-FAGE HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy) system, and developed and deployed an inlet pre-injector (IPI) to determine the chemical zero level in the instrument via scavenging the ambient OH radical. We describe and characterise this technique in addition to its application at field sites in forested locations in Finland, Spain and Germany. Ambient measurements show that OH generated within the HORUS instrument is a non-negligible fraction of the total OH signal, which can comprise 30 to 80% during daytime and 60 to 100% during the night. The contribution of the background OH varied greatly between measurement sites and was likely related to the type and concentration of volatile organic compounds (VOCs) present at each particular location. Two inter-comparisons in contrasting environments between the HORUS instrument and two different chemical ionisation mass spectrometers (CIMS) are described to demonstrate the efficacy of IPI and the necessity of the chemical zeroing method for our LIF-FAGE instrument in such environments.


2021 ◽  
Vol 14 (9) ◽  
pp. 6039-6056
Author(s):  
Brandon Bottorff ◽  
Emily Reidy ◽  
Levi Mielke ◽  
Sebastien Dusanter ◽  
Philip S. Stevens

Abstract. A new instrument for the measurement of atmospheric nitrous acid (HONO) and hydroxyl radicals (OH) has been developed using laser photofragmentation (LP) of HONO at 355 nm after expansion into a low-pressure cell, followed by resonant laser-induced fluorescence (LIF) of the resulting OH radical fragment at 308 nm similar to the fluorescence assay by gas expansion technique (FAGE). The LP/LIF instrument is calibrated by determining the photofragmentation efficiency of HONO and calibrating the instrument sensitivity for detection of the OH fragment. In this method, a known concentration of OH from the photo-dissociation of water vapor is titrated with nitric oxide to produce a known concentration of HONO. Measurement of the concentration of the OH radical fragment relative to the concentration of HONO provides a measurement of the photofragmentation efficiency. The LP/LIF instrument has demonstrated a 1σ detection limit for HONO of 9 ppt for a 10 min integration time. Ambient measurements of HONO and OH from a forested environment and an urban setting are presented along with indoor measurements to demonstrate the performance of the instrument.


2021 ◽  
Author(s):  
Brandon Bottorff ◽  
Emily Reidy ◽  
Levi Mielke ◽  
Sebastien Dusanter ◽  
Philip Stevens

Abstract. A new instrument for the measurement of atmospheric nitrous acid (HONO) and hydroxyl radicals (OH) has been developed using laser photofragmentation (LP) of HONO at 355 nm after expansion into a low-pressure cell, followed by resonant laser-induced fluorescence (LIF) of the resulting OH radical fragment at 308 nm similar to the fluorescence assay by gas expansion technique (FAGE). The LP/LIF instrument is calibrated by determining the photo-fragmentation efficiency of HONO. In this method, a known concentration of OH from the photo-dissociation of water vapor is titrated with nitric oxide to produce a known concentration of HONO. Measurement of the concentration of the OH radical fragment relative to the concentration of HONO provides a measurement of the photo-fragmentation efficiency. The LP/LIF instrument has demonstrated a 1σ detection limit of 9 ppt for a 10-min integration time. Ambient measurements of HONO and OH from a forested environment and an urban setting are presented along with indoor measurements to demonstrate the performance of the instrument.


2008 ◽  
Vol 8 (2) ◽  
pp. 321-340 ◽  
Author(s):  
S. Dusanter ◽  
D. Vimal ◽  
P. S. Stevens

Abstract. The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, as it is involved in many reactions that affect regional air quality and global climate change. Because of its high reactivity, measurements of OH radical concentrations in the atmosphere are difficult, and often require careful calibrations that rely on the production of a known concentration of OH at atmospheric pressure. The Indiana University OH instrument, based on the Fluorescence Assay by Gas Expansion technique (FAGE), has been calibrated in the laboratory using two different approaches: the production of OH from the UV-photolysis of water-vapor, and the steady-state production of OH from the reaction of ozone with alkenes. The former technique relies on two different actinometric methods to measure the product of the lamp flux at 184.9 nm and the photolysis time. This quantity derived from N2O actinometry was found to be 1.5 times higher than that derived from O2 actinometry. The water photolysis and ozone-alkene techniques are shown to agree within their experimental uncertainties (respectively 17% and 44%), although the sensitivities derived from the ozone-alkene technique were systematically lower by 40% than those derived from the water-vapor UV- photolysis technique using O2 actinometry. The agreement between the two different methods improves the confidence of the water-vapor photolysis method as an accurate calibration technique for HOx instruments. Because several aspects of the mechanism of the gas phase ozonolysis of alkenes are still uncertain, this technique should be used with caution to calibrate OH instruments.


2007 ◽  
Vol 7 (5) ◽  
pp. 12877-12926 ◽  
Author(s):  
S. Dusanter ◽  
D. Vimal ◽  
P. S. Stevens

Abstract. The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, as it is involved in many reactions that affect regional air quality and global climate change. Because of its high reactivity, measurements of OH radical concentrations in the atmosphere are difficult, and often require careful calibrations that rely on the production of a known concentration of OH at atmospheric pressure. The Indiana University OH instrument, based on the Fluorescence Assay by Gas Expansion technique (FAGE), has been calibrated in the laboratory using two different approaches: the production of OH from the UV-photolysis of water-vapor, and the steady-state production of OH from the reaction of ozone with alkenes. Both techniques are shown to agree within their experimental uncertainties, although the sensitivities derived from the ozone-alkene technique were systematically lower than those derived from the water-vapor UV-photolysis technique. The agreement between the two different methods improves the confidence of the water-vapor photolysis method as an accurate calibration technique for HOx instruments. Because several aspects of the mechanism of the gas phase ozonolysis of alkenes are still uncertain, this technique should be used with caution to calibrate OH instruments.


2017 ◽  
Author(s):  
Pamela Rickly ◽  
Philip S. Stevens

Abstract. Reactions of the hydroxyl radical (OH) play a central role in the chemistry of the atmosphere, and measurements of its concentration can provide a rigorous test of our understanding of atmospheric oxidation. Several recent studies have shown large discrepancies between measured and modeled OH concentrations in forested areas impacted by emissions of biogenic volatile organic compounds (BVOCs), where modeled concentrations were significantly lower than measurements. A potential reason for some of these discrepancies involves interferences associated with the measurement of OH using the Laser-Induced Fluorescence – Fluorescence Assay with Gas Expansion (LIF-FAGE) technique in these environments. In this study, a turbulent flow reactor operating at atmospheric pressure was coupled to a LIF-FAGE cell and the OH signal produced from the ozonolysis of several BVOCs was measured. To distinguish between OH produced from the ozonolysis reactions and any OH artefact produced inside the LIF-FAGE cell, an external chemical scrubbing technique was used, allowing for the direct measurement of any interference. An interference under high ozone and BVOC concentrations was observed that was not laser generated and was independent of the ozonolysis reaction time. Addition of acetic acid to the reactor eliminated the interference, suggesting that the source of the interference in these experiments involved the decomposition of stabilized Criegee intermediates inside the FAGE detection cell.


2018 ◽  
Vol 11 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Michelle M. Lew ◽  
Sebastien Dusanter ◽  
Philip S. Stevens

Abstract. One technique used to measure concentrations of the hydroperoxy radical (HO2) in the atmosphere involves chemically converting it to OH by addition of NO and subsequent detection of OH. However, some organic peroxy radicals (RO2) can also be rapidly converted to HO2 (and subsequently OH) in the presence of NO, interfering with measurements of ambient HO2 radical concentrations. This interference must be characterized for each instrument to determine to what extent various RO2 radicals interfere with measurements of HO2 and to assess the impact of this interference on past measurements. The efficiency of RO2-to-HO2 conversion for the Indiana University laser-induced fluorescence–fluorescence assay by gas expansion (IU-FAGE) instrument was measured for a variety of RO2 radicals. Known quantities of OH and HO2 radicals were produced from the photolysis of water vapor at 184.9 nm, and RO2 radicals were produced by the reaction of several volatile organic compounds (VOCs) with OH. The conversion efficiency of RO2 radicals to HO2 was measured when NO was added to the sampling cell for conditions employed during several previous field campaigns. For these conditions, approximately 80 % of alkene-derived RO2 radicals and 20 % of alkane-derived RO2 radicals were converted to HO2. Based on these measurements, interferences from various RO2 radicals contributed to approximately 35 % of the measured HO2 signal during the Mexico City Metropolitan Area (MCMA) 2006 campaign (MCMA-2006), where the measured VOCs consisted of a mixture of saturated and unsaturated species. However, this interference can contribute more significantly to the measured HO2 signal in forested environments dominated by unsaturated biogenic emissions such as isoprene.


Sign in / Sign up

Export Citation Format

Share Document