ho2 radical
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Xuefei Ma ◽  
Zhaofeng Tan ◽  
Keding Lu ◽  
Xinping Yang ◽  
Xiaorui Chen ◽  
...  

Abstract. The first OH and HO2 radical observation in Yangtze River Delta, one of the four major urban agglomerations in China, was carried out at a suburban site Taizhou in summer 2018 from May to June, aiming to elucidate the atmospheric oxidation capacity in this region. The maximum diurnal averaged OH and HO2 concentrations were 1.0 × 107 cm−3 and 1.1 × 109 cm−3, respectively, which were the second highest HOx (sum of OH and HO2) radical concentrations observed in China. HONO photolysis was the dominant radical primary source, accounting for 42 % of the total radical initiation rate. Other contributions were from carbonyl photolysis (including HCHO, 24 %), O3 photolysis (17 %), alkenes ozonolysis (14 %), and NO3 oxidation (3 %). A chemical box model based on RACM2-LIM1 mechanism could generally reproduce the observed HOx radicals, but systematic discrepancy remained in the afternoon for OH radical, when NO mixing ratio was less than 0.3 ppb. Additional recycling mechanism equivalent to 100 ppt NO was capable to fill the gap. The sum of monoterpenes was on average up to 0.4 ppb during daytime, which was allocated all to α-pinene in the base model. Sensitivity test without monoterpene input showed the modelled OH and HO2 concentrations would increase by 7 % and 4 %, respectively, but modelled RO2 concentration would significantly decrease by 23 %, indicating that monoterpene was an important precursor of RO2 radicals in this study. Consequently, the daily integrated net ozone production would reduce by 6.3 ppb if without monoterpene input, proving the significant role of monoterpene on the photochemical O3 production in this study. Besides, the generally good agreement between observed and modelled HOx concentrations suggested no significant HO2 heterogeneous uptake process during this campaign. Incorporation of HO2 heterogeneous uptake process would worsen the agreement between HOx radical observation and simulation, and the discrepancy would be beyond the measurement-model combined uncertainties using an effective uptake coefficient of 0.2. Finally, the ozone production efficiency (OPE) was only 1.7 in this study, a few folds lower than other studies in (sub)urban environments. The low OPE indicated slow radical propagation rate and short chain length. As a consequence, ozone formation was suppressed by the low NO concentration in this study.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 732
Author(s):  
Victor Lannuque ◽  
Barbara D’Anna ◽  
Florian Couvidat ◽  
Richard Valorso ◽  
Karine Sartelet

Due to their major role in atmospheric chemistry and secondary pollutant formation such as ozone or secondary organic aerosols, an accurate representation of OH and HO2 (HOX) radicals in air quality models is essential. Air quality models use simplified mechanisms to represent atmospheric chemistry and interactions between HOX and organic compounds. In this work, HOX concentrations during the oxidation of toluene and xylene within the Regional Atmospheric Chemistry Mechanism (RACM2) are improved using a deterministic–near-explicit mechanism based on the Master Chemical Mechanism (MCM) and the generator of explicit chemistry and kinetics of organics in the atmosphere (GECKO-A). Flow tube toluene oxidation experiments are first simulated with RACM2 and MCM/GECKO-A. RACM2, which is a simplified mechanism, is then modified to better reproduce the HOX concentration evolution simulated by MCM/GECKO-A. In total, 12 reactions of the oxidation mechanism of toluene and xylene are updated, making OH simulated by RACM2 up to 70% more comparable to the comprehensive MCM/GECKO-A model for chamber oxidation simulations.


2021 ◽  
Vol 99 ◽  
pp. 40-50
Author(s):  
Yihui Wang ◽  
Renzhi Hu ◽  
Pinhua Xie ◽  
Hao Chen ◽  
Fengyang Wang ◽  
...  

2020 ◽  
Vol 153 (12) ◽  
pp. 124306
Author(s):  
Xiaofeng Tang ◽  
Xiaoxiao Lin ◽  
Gustavo A. Garcia ◽  
Jean-Christophe Loison ◽  
Christa Fittschen ◽  
...  

2020 ◽  
Author(s):  
Yihui Wang ◽  
Renzhi Hu ◽  
Pinhua Xie ◽  
Fengyang Wang ◽  
Jianguo Liu ◽  
...  

<p>    An instrument to detect atmospheric HO<sub>2</sub> radicals using fluorescence assay by gas expansion (FAGE) technique has been developed. HO<sub>2</sub> is measured by reaction with NO to form OH and subsequent detection of OH by laser-induced fluorescence at low pressure. The system performance has been improved by optimizing the expansion distance and pressure, and the influence factors of HO<sub>2 </sub>conversion efficiency are also studied. The interferences of RO<sub>2</sub> radicals produced from OH plus some typical organic compounds were investigated by determining the conversion efficiency of RO<sub>2</sub> to OH during the measurement of HO<sub>2</sub>. The dependence of the conversion of HO<sub>2</sub> on NO concentration was investigated, and low HO<sub>2</sub> conversion efficiency was selected to realize the ambient HO<sub>2</sub> measurement, where the conversion efficiency of RO<sub>2</sub> derived by propane, ethene, isoprene and methanol to OH has been reduced to no more than 6%. Furthermore, no significant interferences from PM<sub>2.5</sub> and NO were found in the ambient HO<sub>2</sub> measurement. The detection limits for HO<sub>2</sub> (S/N=2) are estimated to 4.8×10<sup>5</sup> cm<sup>-3</sup> and 1.1×10<sup>6</sup> cm<sup>-3 </sup>(the conversion efficiency of HO<sub>2</sub> to OH, =20%) under night and noon conditions, with 60s signal integration time. The instrument was successfully deployed during STORM-2018 field campaign at Shenzhen graduate school of Peking University. The diurnal variation of HOx concentration shows that the OH maximum concentration of those days is about 5.5×10<sup>6 </sup>cm<sup>-3 </sup>appearing around 12:00, while the HO<sub>2</sub> maximum concentration is about 5.0×10<sup>8 </sup>cm<sup>-3 </sup>appearing around 13:30.</p>


Author(s):  
Nguyen Trong Nghia

C2H5OH has been using as an alternative fuel for decades; HO2 also plays a pivotal role in the combustion. The kinetics and mechanism for the reaction between C2H5OH and HO2 radical has been investigated using the molecular parameters for the reactants, transition states and products predicted at the CCSD(T)//B3LYP/6-311++G(3df,2p) level of theory. There are ten pair products have been found including C2H5O + H2O2 (PR1), CH3CHOH + H2O2 (PR2), CH2CH2OH + H2O2 (PR3), CH3CH2OOOH + H (PR4), C2H5 + HOOOH (PR5), CH3CH2OOH + OH (PR6), CH3CH(OH)OOH + H (PR7), HOCH2CH2OH + H (PR8), HOOCH3 + CH2OH (PR9), and CH3 + HOOCH2OH (PR10) in which the second and third ones are the major channels. The rate constants and branching ratios for all H-abstraction reactions have been calculated using the conventional transition state theory with asymmetric Eckart tunneling corrections for the temperature ranging from 298 to 2000 K.


2019 ◽  
Author(s):  
Michelle L. Lew ◽  
Pamela S. Rickly ◽  
Brandon P. Bottorff ◽  
Sofia Sklaveniti ◽  
Thierry Léonardis ◽  
...  

Abstract. Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of nitrogen oxides (NOx) have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. During the summer of 2015, OH and HO2 radical concentrations as well as total OH reactivity were measured using Laser-Induced Fluorescence - Fluorescence Assay by Gas Expansion (LIF-FAGE) techniques as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area near the Indiana University, Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, VOCs, NOx, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM). Using an OH chemical scavenger technique, the study revealed the presence of an interference with the LIF-FAGE measurements of OH that increased with both ambient concentrations of ozone and temperature. Subtraction of the interference resulted in measured OH concentrations that were in better agreement with model predictions, although the model still underestimated the measured concentrations, likely due to an underestimation of the concentration of NO at this site. Measurements of HO2 radical concentrations during the campaign included a fraction of isoprene-based peroxy radicals (HO2* = HO2 + αRO2) and were found to agree with model predictions. On average, the measured reactivity was consistent with that calculated from measured OH sinks to within 20 %, with modeled oxidation products accounting for the missing reactivity, although significant missing reactivity (approximately 40 % of the total measured reactivity) was observed on some days.


Sign in / Sign up

Export Citation Format

Share Document