scholarly journals A relative humidity profile retrieval from Megha-Tropiques observations without explicit thermodynamical constraints

2014 ◽  
Vol 7 (9) ◽  
pp. 8983-9023 ◽  
Author(s):  
R. G. Sivira ◽  
H. Brogniez ◽  
C. Mallet ◽  
Y. Oussar

Abstract. A statistical method trained and optimized to retrieve relative humidity (RH) profiles is presented and evaluated with measurements from radiosoundings. The method makes use of the microwave payload of the Megha-Tropiques plateform, namely the SAPHIR sounder and the MADRAS imager. The approach, based on a Generalized Additive Model (GAM), embeds both the physical and statistical characteritics of the inverse problem in the training phase and no explicit thermodynamical constraint, such as a temperature profile or an integrated water vapor content, is provided to the model at the stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases of scattering of the microwave radiation in the 18.7–183.31 GHz range covered by the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme and a SAPHIR-only scheme, to deal with the stop of data acquisition of MADRAS in January 2013 for technical reasons. A comparison to retrievals based on the Multi-Layer Perceptron (MLP) technique and on the Least Square-Support Vector Machines (LS-SVM) shows equivalent performance over a large realistic set, promising low errors (bias < 2.2%) and scatters (correlation > 0.8) throughout the troposphere (150–900 hPa). A comparison to radiosounding measurements performed during the international field experiment CINDY/DYNAMO/AMIE of winter 2011–2012 confirms these results for the mid-tropospheric layers (correlation between 0.6 and 0.92), with an expected degradation of the quality of the estimates at the surface and top layers. Finally a rapid insight of the large-scale RH field from Megha-Tropiques is discussed and compared to ERA-Interim.

2015 ◽  
Vol 8 (3) ◽  
pp. 1055-1071 ◽  
Author(s):  
R. G. Sivira ◽  
H. Brogniez ◽  
C. Mallet ◽  
Y. Oussar

Abstract. A statistical method trained and optimized to retrieve seven-layer relative humidity (RH) profiles is presented and evaluated with measurements from radiosondes. The method makes use of the microwave payload of the Megha-Tropiques platform, namely the SAPHIR sounder and the MADRAS imager. The approach, based on a generalized additive model (GAM), embeds both the physical and statistical characteristics of the inverse problem in the training phase, and no explicit thermodynamical constraint – such as a temperature profile or an integrated water vapor content – is provided to the model at the stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases of scattering of the microwave radiation in the 18.7–183.31 GHz range covered by the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme and a SAPHIR-only scheme to deal with the stop of data acquisition of MADRAS in January 2013 for technical reasons. A comparison to learning machine algorithms (artificial neural network and support-vector machine) shows equivalent performance over a large realistic set, promising low errors (biases < 2.2%RH) and scatters (correlations > 0.8) throughout the troposphere (150–900 hPa). A comparison to radiosonde measurements performed during the international field experiment CINDY/DYNAMO/AMIE (winter 2011–2012) confirms these results for the mid-tropospheric layers (correlations between 0.6 and 0.92), with an expected degradation of the quality of the estimates at the surface and top layers. Finally a rapid insight of the estimated large-scale RH field from Megha-Tropiques is presented and compared to ERA-Interim.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


2021 ◽  
Author(s):  
M. Tanveer ◽  
A. Tiwari ◽  
R. Choudhary ◽  
M. A. Ganaie

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2723
Author(s):  
Evgenia D. Spyrelli ◽  
Christina Papachristou ◽  
George-John E. Nychas ◽  
Efstathios Z. Panagou

Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI) were evaluated for the prediction of the microbiological quality of poultry meat via regression and classification models. Chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight isothermal and two dynamic temperature profiles. Samples were analyzed microbiologically (total viable counts (TVCs) and Pseudomonas spp.), while simultaneously MSI and FT-IR spectra were acquired. The organoleptic quality of the samples was also evaluated by a sensory panel, establishing a TVC spoilage threshold at 6.99 log CFU/cm2. Partial least squares regression (PLS-R) models were employed in the assessment of TVCs and Pseudomonas spp. counts on chicken’s surface. Furthermore, classification models (linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVMs), and quadratic support vector machines (QSVMs)) were developed to discriminate the samples in two quality classes (fresh vs. spoiled). PLS-R models developed on MSI data predicted TVCs and Pseudomonas spp. counts satisfactorily, with root mean squared error (RMSE) values of 0.987 and 1.215 log CFU/cm2, respectively. SVM model coupled to MSI data exhibited the highest performance with an overall accuracy of 94.4%, while in the case of FT-IR, improved classification was obtained with the QDA model (overall accuracy 71.4%). These results confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry products.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


2021 ◽  
Author(s):  
Hanna Klimczak ◽  
Wojciech Kotłowski ◽  
Dagmara Oszkiewicz ◽  
Francesca DeMeo ◽  
Agnieszka Kryszczyńska ◽  
...  

&lt;p&gt;The aim of the project is the classification of asteroids according to the most commonly used asteroid taxonomy (Bus-Demeo et al. 2009) with the use of various machine learning methods like Logistic Regression, Naive Bayes, Support Vector Machines, Gradient Boosting and Multilayer Perceptrons. Different parameter sets are used for classification in order to compare the quality of prediction with limited amount of data, namely the difference in performance between using the 0.45mu to 2.45mu spectral range and multiple spectral features, as well as performing the Prinicpal Component Analysis to reduce the dimensions of the spectral data.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;p&gt;This work has been supported by grant&amp;#160;No. 2017/25/B/ST9/00740 from the National Science Centre, Poland.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document