scholarly journals The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of a urban canopy

2015 ◽  
Vol 8 (2) ◽  
pp. 1891-1933 ◽  
Author(s):  
C. Adderley ◽  
A. Christen ◽  
J. A. Voogt

Abstract. Any radiometer at a fixed location has a biased view when observing a convoluted, three dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical) over a 24 h cycle under clear weather conditions. The error in measuring longwave radiance (L) and/or inferring surface temperatures (T0) is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST) data was recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The dataset resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24 h cycle. This dataset is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting dataset attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C) and to simulate the instantaneous field of view (IFOV) of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects). The simulated directional (T0,d) and hemispheric (T0,h) radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (ϕ) and azimuth (Ω) angles, T0,d (ϕ, Ω) and T0,C differ between −2.7 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d (ϕ, Ω) that are as high as 3.5 K. For a sensor with a narrow IFOV in the nadir of the urban surface, T0,d (ϕ = 0°) differs from T0,C by −2.2 K (day) and by +1.6 K (night). Simulations of the IFOV of hemispherical, downward-facing pyrgeometers at 270 positions show considerable variations in the measured L and inferred hemispherical radiometeric temperature T0,h as a function of both horizontal placement and height. The root mean squared error (RMSE) between different horizontal positions in retrieving outgoing longwave emittance L↑ decreased exponentially with height, and was 11.2, 6.3 and 2.0 W m−2 at 2, 3, and 5 times the mean building height zb. Generally, above 3.5 zb the horizontal positional error is less than the typical accuracy of common pyrgeometers. The average T0,h over 24 h determined from the hemispherical radiometer sufficiently above an urban surface is in close agreement with the average T0,C. However, over the course of the day, the difference between T0,h and T0,C shows an RMSE of 1.8 K (9.9 W m−2) because the relative contributions of facets within the projected IFOV of a pyrgeometer do not correspond to their fractions of the complete urban surface.

2015 ◽  
Vol 8 (7) ◽  
pp. 2699-2714 ◽  
Author(s):  
C. Adderley ◽  
A. Christen ◽  
J. A. Voogt

Abstract. Any radiometer at a fixed location has a biased view when observing a convoluted, three-dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical) over a 24 hour cycle under clear weather conditions. The error in measuring a longwave radiation flux density (L) and/or inferring surface temperatures (T0) is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST) data were recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The data set resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24-hour cycle. This data set is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting data set attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C) and to simulate the radiation in the field of view (FOV) of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects). The simulated directional (T0,d) and hemispheric (T0,h) radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (φ) and azimuth (Ω) angles, T0,d(φ,Ω) and T0,C differ between −2.6 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d(φ,Ω) that are as high as 3.5 K. For a sensor with a narrow FOV in the nadir of the urban surface, T0,d(φ=0) differs from T0,C by +1.9 K (day) and by −1.6 K (night). Simulations of the FOV of hemispherical, downward-facing pyrgeometers at 270 positions show considerable variations in the measured L and inferred hemispherical radiometeric temperature T0,h as a function of both horizontal placement and height. The root mean squared error (RMSE) between different horizontal positions in retrieving outgoing longwave emittance L↑ decreased exponentially with height, and was 11.2, 6.3 and 2.0 W m−2 at 2, 3, and 5 times the mean building height zb. Generally, above 3.5zb the horizontal positional error is less than the typical accuracy of common pyrgeometers. The average T0,h over 24 h determined from the hemispherical radiometer sufficiently above an urban surface is in close agreement with the average T0,C. However, over the course of the day, the difference between T0,h and T0,C shows an RMSE of 1.7 K (9.4 W m−2) because the relative contributions of facets within the projected FOV of a pyrgeometer do not correspond to their fractions of the complete urban surface.


Author(s):  
J. Choi ◽  
L. Zhu ◽  
H. Kurosu

In the current study, we developed a methodology for detecting cracks in the surface of paved road using 3D digital surface model of road created by measuring with three-dimensional laser scanner which works on the basis of the light-section method automatically. For the detection of cracks from the imagery data of the model, the background subtraction method (Rolling Ball Background Subtraction Algorithm) was applied to the data for filtering out the background noise originating from the undulation and gradual slope and also for filtering the ruts that were caused by wearing, aging and excessive use of road and other reasons. We confirmed the influence from the difference in height (depth) caused by forgoing reasons included in a data can be reduced significantly at this stage. Various parameters of ball radius were applied for checking how the result of data obtained with this process vary according to the change of parameter and it becomes clear that there are not important differences by the change of parameters if they are in a certain range radius. And then, image segmentation was performed by multi-resolution segmentation based on the object-based image analysis technique. The parameters for the image segmentation, scale, pixel value (height/depth) and the compactness of objects were used. For the classification of cracks in the database, the height, length and other geometric property are used and we confirmed the method is useful for the detection of cracks in a paved road surface.


Author(s):  
J. Choi ◽  
L. Zhu ◽  
H. Kurosu

In the current study, we developed a methodology for detecting cracks in the surface of paved road using 3D digital surface model of road created by measuring with three-dimensional laser scanner which works on the basis of the light-section method automatically. For the detection of cracks from the imagery data of the model, the background subtraction method (Rolling Ball Background Subtraction Algorithm) was applied to the data for filtering out the background noise originating from the undulation and gradual slope and also for filtering the ruts that were caused by wearing, aging and excessive use of road and other reasons. We confirmed the influence from the difference in height (depth) caused by forgoing reasons included in a data can be reduced significantly at this stage. Various parameters of ball radius were applied for checking how the result of data obtained with this process vary according to the change of parameter and it becomes clear that there are not important differences by the change of parameters if they are in a certain range radius. And then, image segmentation was performed by multi-resolution segmentation based on the object-based image analysis technique. The parameters for the image segmentation, scale, pixel value (height/depth) and the compactness of objects were used. For the classification of cracks in the database, the height, length and other geometric property are used and we confirmed the method is useful for the detection of cracks in a paved road surface.


2004 ◽  
Vol 43 (12) ◽  
pp. 1899-1910 ◽  
Author(s):  
Hiroyuki Kusaka ◽  
Fujio Kimura

Abstract A single-layer urban canopy model is incorporated into a simple two-dimensional atmospheric model in order to examine the individual impacts of anthropogenic heating, a large heat capacity, and a small sky-view factor on mesoscale heat island formation. It is confirmed that a nocturnal heat island on a clear, calm summer day results from the difference in atmospheric stability between a city and its surroundings. The difference is caused by anthropogenic heating and the following two effects of urban canyon structure: (i) a larger heat capacity due to the walls and (ii) a smaller sky-view factor. Sensitivity experiments show that the anthropogenic heating increases the surface air temperature though the day. (This factor strongly affects the nocturnal temperature, and the maximum increase of 0.67°C occurs at 0500 LST.) The larger heat capacity due to the walls decreases the daytime temperature and increases the nocturnal temperature. (The maximum increase of 0.39°C occurs at 0600 LST.) The smaller sky-view factor increases the temperature though the day, particularly during the first several hours after sunset. (The maximum increase of 0.52°C occurs at midnight.) In urban areas, this factor results in uniform cooling that occurs at a constant rate. The impact of the canyon structure is shown to be as significant as anthropogenic heating.


2017 ◽  
Author(s):  
Jaroslav Resler ◽  
Pavel Krč ◽  
Michal Belda ◽  
Pavel Juruš ◽  
Nina Benešová ◽  
...  

Abstract. Urban areas are an important part of the climate system and many aspects of urban climate have a direct effect on human health and living conditions. This implies the need for a reliable tool for climatology studies that supports urban planning and development strategies. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new model of energy processes for urban environments was developed as an Urban Surface Model (USM) and integrated as a module into the large-eddy simulation (LES) model PALM. The USM contains a multi-reflection radiation model for short and long wave radiation, calculation of the energy balance on horizontal and vertical impervious surfaces, thermal diffusion in ground, wall and roof materials and anthropogenic heat from transportation. The module also models absorption of radiation by resolved plant canopy (i.e. trees, shrubs). The USM was parallelized using MPI and performance testing demonstrates that the computational costs of the USM are reasonable and the model scales well on typical cluster configurations. The module was fully integrated into PALM and is available via its online repository under GNU General Public License (GPL). The implementation was tested on a summer heat wave episode in the real conditions of a selected Prague crossroad. General patterns of temperature of various surface types (walls, pavement) are in good agreement with observations. The coupled LES-USM system appears to correct the bias found between observations and mesoscale model predictions for the near-surface air temperature. The results, however, show a strong dependence on the prescribed surface and wall material properties. Their exact knowledge is thus essential for the correct prediction of the flow in the urban canopy layer.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Habtamu Beri ◽  
Perumalla Janaki Ramulu

In this study, NACA0018 airfoil surface conformity test was conducted using API tracker3 in combination with SpatialAnalyzer (SA) and modeling software SolidWorks. Plaster of Paris is used as a plug making material and a woven-type fiberglass is used as mold and airfoil surface making material. For airfoil surface analysis, three-dimensional model of the airfoil surface was developed in SolidWorks software and imported in IGES file format to SpatialAnalyzer (SA) software. Then, measurements were taken from manufactured airfoil surface using laser tracker through surface scanning method. Surface conformity test was conducted through fitting of measured points to surface model imported from SolidWorks to SpatialAnalyzer (SA) software. The optimized fit summary result shows that the average fit difference is 0.0 having standard deviation from 0.22224 from the average and zero with RMS of 0.2210. The maximum magnitude of the difference including x and y together is 0.5336 and the minimum −0.5077. Thus, with a given range of surface quality specification, laser tracker is an easy and reliable measurement and inspection tool to be considered.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


2020 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
E. Mysen

AbstractA network of pointwise available height anomalies, derived from levelling and GPS observations, can be densified by adjusting a gravimetric quasigeoid using least-squares collocation. The resulting type of Corrector Surface Model (CSM) is applied by Norwegian surveyors to convert ellipsoidal heights to normal heights expressed in the official height system NN2000. In this work, the uncertainty related to the use of a CSM to predict differences in height anomaly was sought. As previously, the application of variograms to determine the local statistical properties of the adopted collocation model led to predictions that were consistent with their computed uncertainties. For the purpose of predicting height anomaly differences, the effect of collocation was seen to be moderate in general for the small spatial separations considered (< 10 km). However, the relative impact of collocation could be appreciable, and increasing with distance, near the network. At last, it was argued that conservative uncertainties of height anomaly differences may be obtained by rescaling output of a grid interpolation by \sqrt \Delta, where Δ is the spatial separation of the two locations for which the difference is sought.


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


Sign in / Sign up

Export Citation Format

Share Document