scholarly journals A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths

2015 ◽  
Vol 8 (1) ◽  
pp. 443-485 ◽  
Author(s):  
S. DeSouza-Machado ◽  
L. Strow ◽  
E. Maddy ◽  
O. Torres ◽  
G. Thomas ◽  
...  

Abstract. We present a novel method to retrieve daytime atmospheric dust and ash plume heights using a synergy of infrared hyper-spectral radiances and retrieved visible optical depths. The method is developed using data from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), both of which are on NASA's Aqua platform, and lends itself to also a χ2 height derivation based on the smallest bias between observations and calculations in the thermal infrared window. The retrieval methodology is validated against almost 30 months of dust centroid heights obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP) data, and against ash plume heights obtained from the Advanced Along-Track Scanning Radiometer (AATSR) after the Puyehue Cordon Caulle volcanic eruption of June 2011. Comparisons are also made against Goddard Chemistry Aerosol Radiation and Transport (GOCART) climatological aerosol heights. In general there is good agreement between the heights from the CALIPSO data and the AIRS/MODIS retrieval, especially over the Atlantic and Mediterranean regions; over land one there are more noticeable differences. The AIRS/MODIS derived heights are within typically 25% of the CALIOP centroid heights.

2006 ◽  
Vol 21 (4) ◽  
pp. 649-655 ◽  
Author(s):  
Thomas F. Lee ◽  
Steven D. Miller ◽  
Carl Schueler ◽  
Shawn Miller

Abstract The Visible/Infrared Imager Radiometer Suite (VIIRS), scheduled to fly on the satellites of the National Polar-orbiting Operational Environmental Satellite System, will combine the missions of the Advanced Very High Resolution Radiometer (AVHRR), which flies on current National Oceanic and Atmospheric Administration satellites, and the Operational Linescan System aboard the Defense Meteorological Satellite Program satellites. VIIRS will offer a number of improvements to weather forecasters. First, because of a sophisticated downlink and relay system, VIIRS latencies will be 30 min or less around the globe, improving the timeliness and therefore the operational usefulness of the images. Second, with 22 channels, VIIRS will offer many more products than its predecessors. As an example, a true-color simulation is shown using data from the Earth Observing System’s Moderate Resolution Imaging Spectroradiometer (MODIS), an application current geostationary imagers cannot produce because of a missing “green” wavelength channel. Third, VIIRS images will have improved quality. Through a unique pixel aggregation strategy, VIIRS pixels will not expand rapidly toward the edge of a scan like those of MODIS or AVHRR. Data will retain nearly the same resolution at the edge of the swath as at nadir. Graphs and image simulations depict the improvement in output image quality. Last, the NexSat Web site, which provides near-real-time simulations of VIIRS products, is introduced.


2019 ◽  
Vol 11 (18) ◽  
pp. 2100 ◽  
Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Robert E. Wolfe ◽  
Houria Madani ◽  
Guoqing (Gary) Lin ◽  
...  

Atmospheric motion vectors (AMVs), derived by tracking patterns, represent the winds in a layer characteristic of the pattern. AMV height (or pressure), important for applications in atmospheric research and operational meteorology, is usually assigned using observed IR brightness temperatures with a modeled atmosphere and can be inaccurate. Stereoscopic tracking provides a direct geometric height measurement of the pattern that an AMV represents. We extend our previous work with multi-angle imaging spectro–radiometer (MISR) and GOES to moderate resolution imaging spectroradiometer (MODIS) and the GOES-R series advanced baseline imager (ABI). MISR is a unique satellite instrument for stereoscopy with nine angular views along track, but its images have a narrow (380 km) swath and no thermal IR channels. MODIS provides a much wider (2330 km) swath and eight thermal IR channels that pair well with all but two ABI channels, offering a rich set of potential applications. Given the similarities between MODIS and VIIRS, our methods should also yield similar performance with VIIRS. Our methods, as enabled by advanced sensors like MODIS and ABI, require high-accuracy geographic registration in both systems but no synchronization of observations. AMVs are retrieved jointly with their heights from the disparities between triplets of ABI scenes and the paired MODIS granule. We validate our retrievals against MISR-GOES retrievals, operational GOES wind products, and by tracking clear-sky terrain. We demonstrate that the 3D-wind algorithm can produce high-quality AMV and height measurements for applications from the planetary boundary layer (PBL) to the upper troposphere, including cold-air outbreaks, wildfire smoke plumes, and hurricanes.


2018 ◽  
Vol 115 (31) ◽  
pp. 7901-7906 ◽  
Author(s):  
Crystal D. McClure ◽  
Daniel A. Jaffe

Using data from rural monitoring sites across the contiguous United States, we evaluated fine particulate matter (PM2.5) trends for 1988–2016. We calculate trends in the policy-relevant 98th quantile of PM2.5 using Quantile Regression. We use Kriging and Gaussian Geostatistical Simulations to interpolate trends between observed data points. Overall, we found positive trends in 98th quantile PM2.5 at sites within the Northwest United States (average 0.21 ± 0.12 µg·m−3·y−1; ±95% confidence interval). This was in contrast with sites throughout the rest of country, which showed a negative trend in 98th quantile PM2.5, likely due to reductions in anthropogenic emissions (average −0.66 ± 0.10 µg·m−3·y−1). The positive trend in 98th quantile PM2.5 is due to wildfire activity and was supported by positive trends in total carbon and no trend in sulfate across the Northwest. We also evaluated daily moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) for 2002–2017 throughout the United States to compare with ground-based trends. For both Interagency Monitoring of Protected Visual Environments (IMPROVE) PM2.5 and MODIS AOD datasets, we found positive 98th quantile trends in the Northwest (1.77 ± 0.68% and 2.12 ± 0.81% per year, respectively) through 2016. The trend in Northwest AOD is even greater if data for the high-fire year of 2017 are included. These results indicate a decrease in PM2.5 over most of the country but a positive trend in the 98th quantile PM2.5 across the Northwest due to wildfires.


2009 ◽  
Vol 66 (12) ◽  
pp. 3721-3731 ◽  
Author(s):  
Joonsuk Lee ◽  
Ping Yang ◽  
Andrew E. Dessler ◽  
Bo-Cai Gao ◽  
Steven Platnick

Abstract To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. “Thin” cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-μm channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as “clear sky” by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0–20 W m−2, depending on the optical depths of thin cirrus clouds.


2017 ◽  
Vol 17 (3) ◽  
pp. 1931-1943 ◽  
Author(s):  
Christopher E. Sioris ◽  
Chris A. McLinden ◽  
Mark W. Shephard ◽  
Vitali E. Fioletov ◽  
Ihab Abboud

Abstract. Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate Resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local Aerosol Robotic Network (AERONET) (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002–2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (∼  5 % year−1) is observed in this northern mining region using some of the satellite AOD products.


2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Murtadha A. Fadhil ◽  
Kais J. Al-Jumaily

Studying clouds is a top priority among many atmospheric scientists because clouds are one of the greatest unknown factors in predicting changes in the Earth’s climate. Clouds play an important role in maintaining the energy balance because they can reflect, absorb, and radiate energy. The aim of this research is to investigate the properties of clouds over Iraq using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS)on board Aqua Satellite for water and ice clouds. The results showed that daily mean cloud top pressure patterns during spring months are higher than other months and cloud top temperature patterns reached their highest values during summer months. The results also indicated that the ice cloud effective particle radius is relatively large during summer while cloud optical thickness assume its largest values in winter months. It was found that the highest values of precipitation rate over Iraq occurred during March to mid-April. Correlation aanalysis between optical thickness and liquid water path over Iraq that these two parameters are positively correlated and the correlation for water cloud was better that that for ice clouds. Case studies of heavy precipitation events over Iraq showed that the maximum values of the most cloud properties variables were located ahead of the storm center. 


2017 ◽  
Vol 56 (3) ◽  
pp. 555-572 ◽  
Author(s):  
Kevin J. Mueller ◽  
Dong L. Wu ◽  
Ákos Horváth ◽  
Veljko M. Jovanovic ◽  
Jan-Peter Muller ◽  
...  

AbstractCloud motion vector (CMV) winds retrieved from the Multiangle Imaging SpectroRadiometer (MISR) instrument on the polar-orbiting Terra satellite from 2003 to 2008 are compared with collocated atmospheric motion vectors (AMVs) retrieved from Geostationary Operational Environmental Satellite (GOES) imagery over the tropics and midlatitudes and from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery near the poles. MISR imagery from multiple view angles is exploited to jointly retrieve stereoscopic cloud heights and motions, showing advantages over the AMV heights assigned by radiometric means, particularly at low heights (<3 km) that account for over 95% of MISR CMV sampling. MISR–GOES wind differences exhibit a standard deviation ranging with increasing height from 3.3 to 4.5 m s−1 for a high-quality [quality indicator (QI) ≥ 80] subset where height differences are <1.5 km. Much of the observed difference can be attributed to the less accurately retrieved component of CMV motion along the direction of satellite motion. MISR CMV retrieval is subject to correlation between error in retrieval of this along-track component and of height. This manifests as along-track bias varying with height to magnitudes as large as 2.5 m s−1. The cross-track component of MISR CMVs shows small (<0.5 m s−1) bias and standard deviation of differences (1.7 m s−1) relative to GOES AMVs. Larger differences relative to MODIS are attributed to the tracking of cloud features at heights lower than MODIS in multilayer cloud scenes.


2017 ◽  
Author(s):  
Matthew W. Christensen ◽  
David Neubauer ◽  
Caroline Poulsen ◽  
Gareth Thomas ◽  
Greg McGarragh ◽  
...  

Abstract. Increased concentrations of aerosol can enhance the albedo of warm lowlevel cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3D radiative transfer) clouds. To screen for this contamination, we have developed a new 5 Cloud-Aerosol Pairing Algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along Track Scanning Radiometer (AATSR) and MODerate Resolution Imaging Spectroradiometer (MODIS) show a marked reduction in the strength of the intrinsic aerosol indirect forcing when selecting aerosol pairs that are located farther away from the clouds (−0.28 ± 0.26 W/m2) compared to those 10 including pairs that are within 15 km of the nearest cloud (−0.49 ± 0.18 W/m2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to including retrieval artefacts in the aerosol located near clouds.


2016 ◽  
Author(s):  
Christopher E. Sioris ◽  
Chris A. McLinden ◽  
Mark W. Shephard ◽  
Vitali E. Fioletov ◽  
Ihab Abboud

Abstract. Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local AERONET (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian Mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002–2015) in PM2.5 mass density exists. An increasing trend of similar amplitude is observed in this northern mining region using some of the satellite AOD products.


Sign in / Sign up

Export Citation Format

Share Document