scholarly journals Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

2002 ◽  
Vol 20 (12) ◽  
pp. 1935-1941 ◽  
Author(s):  
L. A. Leonovich ◽  
E. L. Afraimovich ◽  
E. B. Romanova ◽  
A. V. Taschilin

Abstract. This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07) in quiet geomagnetic conditions (Dst = -10 nT) has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques) – Solar physics, astrophysics and astronomy (ultraviolet emissions)

2019 ◽  
Vol 5 (1) ◽  
pp. 82-85
Author(s):  
Андрей Холмогоров ◽  
Andrey Kholmogorov ◽  
Всеволод Иванов ◽  
Vsevolod Ivanov ◽  
Олег Горбачев ◽  
...  

This article explores the possibility of improving the accuracy of positioning in single-frequency satellite radio navigation equipment through the use of an empirical model of the total electronic content GEMTEC. The effectiveness of this model is compared with that of the Klobuchar model, which is recommended for the GPS interface control document. We conducted testing at our observation points, using data from the international network of IGS stations in the GPS system. The use of the international network allowed us to select a long period of time for the testing from 2001 to 2017. As a result, it was shown that the GEMTEC model significantly reduces the average positioning errors as compared to the Klobuchar model. We also demonstrate the possibility of introducing the GEMTEC model and its full-featured use in single-frequency home-class receivers, for example, in the Russian receiver MNP-M7.


2019 ◽  
Vol 5 (1) ◽  
pp. 107-111
Author(s):  
Андрей Холмогоров ◽  
Andrey Kholmogorov ◽  
Всеволод Иванов ◽  
Vsevolod Ivanov ◽  
Олег Горбачев ◽  
...  

This article explores the possibility of improving the accuracy of positioning in single-frequency satellite radio navigation equipment through the use of an empirical model of the total electronic content GEMTEC. The effectiveness of this model is compared with that of the Klobuchar model, which is recommended for the GPS interface control document. We conducted testing at our observation points, using data from the international network of IGS stations in the GPS system. The use of the international network allowed us to select a long period of time for the testing from 2001 to 2017. As a result, it was shown that the GEMTEC model significantly reduces the average positioning errors as compared to the Klobuchar model. We also demonstrate the possibility of introducing the GEMTEC model and its full-featured use in single-frequency home-class receivers, for example, in the Russian receiver MNP-M7.


2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2018 ◽  
Author(s):  
Mostafa Rabah ◽  
Ahmed Sedeek

Abstract. Global ionosphere maps (GIM) are generated on a daily basis at CODE using data from about 400 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content (VTEC) is modeled in a solar-geomagnetic reference frame using a Spherical Harmonics Expansion “SHE” up to degree and order 15. To cover the holes of the first GIM computation stage existing in the North Africa and over the Oceans resulting a shortage of GNSS station in North Africa, an optimum spatial-temporal interpolation technique was developed to cover these holes (Krankowski and Hernandez-Pajares, 2016). The current paper evaluates the ionospheric correction by Global Ionospheric Maps, GIM, provided in (IONEX) files produced by International GNSS Services “IGS”. The evaluation is performed based on investigating the effect of a given GIM ionospheric correction on kinematic relative positioning solutions. The evaluation was done using several baselines of different lengths in Egypt. The results show that there is no significant effect of the provided GIM values on the solution of kinematic processing. The results confirm that although there is a lack of International GNSS Service (IGS stations) over North Africa, GIMs have no effect in mitigating ionospheric error. A new value for the ionosphere correction VTEC values was obtained by a regional, developed algorithm based on zero-differenced phase ionospheric delay (ZDPID) (Tawfeek et al., 2018). These new values of VTEC were fed into GIMs for the specified stations data. A useful result was obtained for correcting the ionospheric error over kinematic solution of many baseline lengths up to 300 km which demonstrates validity of the proposed evaluation method.


2011 ◽  
Vol 116 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. H. Zhang ◽  
X. H. Mo ◽  
L. Cai ◽  
W. Zhang ◽  
M. Feng ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. 58-65 ◽  
Author(s):  
Юрий Ясюкевич ◽  
Yury Yasyukevich ◽  
Эльвира Астафьева ◽  
Elvira Astafyeva ◽  
Илья Живетьев ◽  
...  

Using data of worldwide network of GPS receivers we investigated losses of GPS phase lock (LoL) during two strong magnetic storms. At fundamental L1 frequency, LoL density is found to increase up to 0.25 % and at L2 frequency the increase is up to 3 %. This is several times as much compared with the background level. During the 2003 November 20 magnetic storm, the number of total electron content (TEC) slips exceeded the background level ~50 times. During superstorms, the most number of GPS LoL is observed at low and high latitudes. At the same time, the area of numerous TEC slips correspond to auroral oval boundaries.


Author(s):  
Roman Sidorov ◽  
Anatoly Soloviev ◽  
Alexei Gvishiani ◽  
Viktor Getmanov ◽  
Mioara Mandea ◽  
...  

Abstract. The September 2017 solar flares and the subsequent geomagnetic storms driven by the coronal mass ejections were recognized as the ones of the most powerful space weather events during the current solar cycle. The occurrence of the most powerful solar flares and magnetic storms during the declining phase of a solar cycle (including the current 24th cycle) is a well-known phenomenon. The purpose of this study is to better characterize these events by applying the generalized characteristic function approach for combined analysis of geomagnetic activity indices, total electron content data and secondary cosmic ray data from the muon hodoscope that contained Forbush decreases resulting from solar plasma impacts. The main advantage of this approach is the possibility of identification of low-amplitude specific features in the analyzed data sets, using data from several environmental sources. The data sets for the storm period on September 6–11, 2017, were standardized in a unified way to construct the generalized characteristic function representing the overall dynamics of the data sequence. The new developed technique can help to study various space weather effects and obtain new mutually supportive information on different phases of geomagnetic storm evolution, based on the geomagnetic and other environmental observations in the near-terrestrial space.


2007 ◽  
Vol 25 (12) ◽  
pp. 2609-2614 ◽  
Author(s):  
T. Maruyama

Abstract. A regional reference model of total electron content (TEC) was constructed using data from the GPS Earth Observation Network (GEONET), which consists of more than 1000 Global Positioning System (GPS) satellite receivers distributed over Japan. The data covered almost one solar activity period from April 1997 to June 2007. First, TECs were determined for 32 grid points, expanding from 27 to 45° N in latitude and from 127 to 145° E in longitude at 15-min intervals. Secondly, the time-latitude variation averaged over three days was determined by using the surface harmonic functional expansion. The coefficients of the expansion were then modeled by using a neural network technique with input parameters of the season (day of the year) and solar activity (F10.7 index and sunspot number). Thus, two-dimensional TEC maps (time vs. latitude) can be obtained for any given set of solar activity and day of the year.


Sign in / Sign up

Export Citation Format

Share Document