scholarly journals The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

2003 ◽  
Vol 21 (6) ◽  
pp. 1289-1294 ◽  
Author(s):  
H. J. Fahr

Abstract. Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas) – Ionosphere (plasma temperature and density)

2003 ◽  
Vol 21 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
H. A. Elliott ◽  
D. J. McComas ◽  
P. Riley

Abstract. Comparison of solar wind observations from the ACE spacecraft, in the ecliptic plane at ~ 1 AU, and the Ulysses spacecraft as it orbits over the Sun’s poles, provides valuable information about the latitudinal extent and variation of solar wind structures in the heliosphere. While qualitative comparisons can be made using average properties observed at these two locations, the comparison of specific, individual structures requires a procedure to determine if a given structure has been observed by both spacecraft. We use a 1-D hydrodynamic code to propagate ACE plasma measurements out to the distance of Ulysses and adjust for the differing longitudes of the ACE and Ulysses spacecraft. In addition to comparing the plasma parameters and their characteristic profiles, we examine suprathermal electron measurements and magnetic field polarity to help determine if the same features are encountered at both ACE and Ulysses. The He I l 1083 nm coronal hole maps are examined to understand the global structure of the Sun during the time of our heliospheric measurements. We find that the same features are frequently observed when both spacecraft are near the ecliptic plane. Stream structures derived from smaller coronal holes during the rising phase of solar cycle 23 persists over 20°–30° in heliolatitude, consistent with their spatial scales back at the Sun.Key words. Interplanetary physics (solar wind plasma)


2021 ◽  
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward-southward angle of 45 degrees, continuous formation of cavitons is found up to ~ 11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ~ 2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that the transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2021 ◽  
Vol 39 (5) ◽  
pp. 911-928
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low-frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which are thought to evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward–southward angle of 45∘, continuous formation of cavitons is found up to ∼11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ∼2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2018 ◽  
Vol 214 (4) ◽  
Author(s):  
David G. Sibeck ◽  
R. Allen ◽  
H. Aryan ◽  
D. Bodewits ◽  
P. Brandt ◽  
...  

2009 ◽  
Vol 691 (1) ◽  
pp. 372-381 ◽  
Author(s):  
S. L. Snowden ◽  
M. R. Collier ◽  
T. Cravens ◽  
K. D. Kuntz ◽  
S. T. Lepri ◽  
...  

2014 ◽  
Vol 796 (1) ◽  
pp. 28 ◽  
Author(s):  
B. J. Wargelin ◽  
M. Kornbleuth ◽  
P. L. Martin ◽  
M. Juda
Keyword(s):  
X Ray ◽  

2003 ◽  
Vol 21 (6) ◽  
pp. 1303-1313 ◽  
Author(s):  
K. Scherer ◽  
H. J. Fahr

Abstract. Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind) and up to 6–7 (downwind) preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.Key words. Interplanetary physics (heliopause and solar wind termination; general or miscellaneous) – Space plasma physics (experimental and mathematical techniques)


2000 ◽  
Vol 18 (9) ◽  
pp. 1003-1008 ◽  
Author(s):  
P. J. Moran ◽  
S. Ananthakrishnan ◽  
V. Balasubramanian ◽  
A. R. Breen ◽  
A. Canals ◽  
...  

Abstract. Observations of interplanetary scintillation (IPS) allow accurate solar wind velocity measurements to be made at all heliographic latitudes and at a range of distances from the Sun. The data may be obtained with either single, double or multiple antennas, each requiring a different method of analysis. IPS data taken during the 1998 whole sun month (30th July-31st August 1998) by EISCAT, the ORT (Ooty Radio Telescope), India, and the Nagoya IPS system, Japan, allow the results of individual methods of analysis to be compared. Good agreement is found between the velocity measurements using each method, and when combined an improved understanding of the structure of the solar wind can be obtained.Key words: Interplanetary physics (solar wind plasma; sources of the solar wind) - Solar physics, astrophysics and astronomy (instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document