scholarly journals Interplanetary magnetic field control of dayside transient event occurrence and motion in the ionosphere and magnetosphere

2004 ◽  
Vol 22 (12) ◽  
pp. 4197-4202 ◽  
Author(s):  
G. I. Korotova ◽  
D. G. Sibeck ◽  
H. J. Singer ◽  
T. J. Rosenberg ◽  
M. J. Engebretson

Abstract. The pressure pulse model for dayside transient ionospheric events predicts dawnward moving events at and prior to local noon during periods of spiral interplanetary magnetic field (IMF) orientation, but duskward moving events at and after local noon during rarer periods of orthospiral IMF orientation. We use this model to interpret ground and geosynchronous magnetometer observations of a duskward-moving transient event that occurred on 10 August 1995 during a period of orthospiral IMF orientation.  We then survey geosynchronous GOES-8, 9, and 10 magnetometer observations to determine the directions of motion for 67 isolated magnetic impulse events seen in South Pole magnetograms from 1995-1999. The occurrence patterns and directions of motion inferred from both case and statistical studies are consistent with pressure pulse model predictions. Key words. Interplanetary physics (Interplanetary magnetic fields; discontinuities) – Magnetospheric physics (Magnetosphere-ionosphere interactions)

2003 ◽  
Vol 21 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
B. Heber ◽  
G. Sarri ◽  
G. Wibberenz ◽  
C. Paizis ◽  
P. Ferrando ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields)


2003 ◽  
Vol 21 (6) ◽  
pp. 1347-1357 ◽  
Author(s):  
P. Riley ◽  
Z. Mikić ◽  
J. A. Linker

Abstract. In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun’s approach toward solar maximum; and (2) Ulysses’ second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses’ first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.Key words. Interplanetary physics (Interplanetary magnetic fields; solar wind plasma; sources of the solar wind)


2003 ◽  
Vol 21 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
O. E. Malandraki ◽  
E. T. Sarris ◽  
G. Tsiropoula

Abstract. Solar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields)


1996 ◽  
Vol 14 (5) ◽  
pp. 533-537 ◽  
Author(s):  
A. S. Rodger ◽  
A. C. Graham

Abstract. Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994) when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.


2003 ◽  
Vol 21 (6) ◽  
pp. 1377-1382 ◽  
Author(s):  
G. H. Jones ◽  
A. Balogh

Abstract. The Ulysses spacecraft is in a near-polar solar orbit with a period of 6.2 years. The heliospheric magnetic field polarity detected by Ulysses from its 1992 Jupiter encounter to the current time is presented, following ballistic mapping of the polarity information to the solar wind source surface, at approximately 2.5 solar radii. The spacecraft’s first foray to polar latitudes and first rapid heliolatitude scan occurred in 1994–1995, near a minimum in solar activity. The heliospheric current sheet during this period was confined to low heliolatitudes. In 2000–2001, Ulysses returned in situ data from the same region of its orbit as in 1994–1995, but near to the maximum in solar activity. Unlike at solar minimum, heliospheric current sheet crossings were detected at the spacecraft over a wide heliolatitude range, which is consistent with the reversal of the solar magnetic dipole occurring during solar maximum. Despite complexity in the solar wind parameters during the latest fast latitude scan (McComas et al., 2002), the underlying magnetic field structure appears consistent with a simple dipole inclined at a large angle to the solar rotational axis. The most recent data show the heliospheric current sheet returning to lower heliolatitudes, indicating that the dipole and rotational axes are realigning, with the Sun’s magnetic polarity having reversed.Key words. Interplanetary physics (interplanetary magnetic fields; sources of the solar wind) – Solar physics, astrophysics and astronomy (magnetic fields)


2004 ◽  
Vol 22 (4) ◽  
pp. 1395-1405 ◽  
Author(s):  
M. Lockwood ◽  
R. B. Forsyth ◽  
A. Balogh ◽  
D. J. McComas

Abstract. Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near-Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field's radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days), for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000) model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the sunspot number to quantify the rate of open flux emergence. It predicts that the average open solar flux has been decreasing since 1987, as is observed in the variation of all the estimates of the open flux. This decline combines with the solar cycle variation to produce an open flux during the second (sunspot maximum) perihelion pass of Ulysses which is only slightly larger than that during the first (sunspot minimum) perihelion pass. Key words. Interplanetary physics (interplanetary magnetic fields) – Solar physics, astrophysics and astronomy (magnetic fields)


2000 ◽  
Vol 18 (2) ◽  
pp. 129-140 ◽  
Author(s):  
O. Malandraki ◽  
E. T. Sarris ◽  
P. Trochoutsos

Abstract. In this work, solar flare energetic particle fluxes (Ee ≥ 42 keV) observed by the HI-SCALE instrument onboard Ulysses, a spacecraft that is probing the heliosphere in 3-D, are utilized as diagnostics of the large-scale structure and topology of the interplanetary magnetic field (IMF) embedded within two well-identified interplanetary coronal mass ejection (ICME) structures. On the basis of the energetic solar flare particle observations firm conclusions are drawn on whether the detected ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at 2.5 AU. From the development of the angular distributions of the particle intensities, we have inferred that portions of the ICMEs studied consisted of both open and closed magnetic field lines. Both ICMEs present a filamentary structure comprising magnetic filaments with distinct electron anisotropy characteristics. Subsequently, we studied the evolution of the anisotropies of the energetic electrons along the magnetic field loop-like structure of one ICME and computed the characteristic decay time of the anisotropy which is a measure of the amount of scattering that the trapped electron population underwent after injection at the Sun.Key words: Interplanetary physics (energetic particles; interplanetary magnetic fields)


1996 ◽  
Vol 14 (4) ◽  
pp. 383-399 ◽  
Author(s):  
C.-C. Wu ◽  
M. Dryer ◽  
S. T. Wu

Abstract. A fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) has been used, for the first time, to study the relationship between different forms of solar activity and transient variations of the north-south component, Bz, of the interplanetary magnetic field (IMF) at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Bθ (=–Bz) at 1 AU. Results show that, for a given pressure pulse, the orientation of the corresponding transient variation of Bz has a strong relationship to the location of the pressure pulse and the initial conditions of the IMF. Two initial IMF conditions are considered: a unipolar Archimedean spiral with outward polarity and a flat heliospheric current sheet (HCS) with outward polarity in the northern hemisphere and which gradually reverses polarity in the solar equatorial plane to inward polarity in the southern heliospheric hemisphere. The wave guide effect of the HCS is also demonstrated.


2005 ◽  
Vol 23 (7) ◽  
pp. 2687-2704 ◽  
Author(s):  
R. P. Lepping ◽  
C.-C. Wu ◽  
D. B. Berdichevsky

Abstract. A scheme is presented whose purpose is twofold: (1) to enable the automatic identification of an interplanetary magnetic cloud (MC) passing Earth from real-time measurements of solar wind magnetic field and plasma quantities or (2) for on-ground post-data collection MC identification ("detection" mode). In the real-time ("prediction") mode the scheme should be applicable to data from a spacecraft upstream of Earth, such as ACE, or to that of any near real-time field and plasma monitoring platform in the solar wind at/near 1AU. The initial identification of a candidate MC-complex is carried out by examining proton plasma beta, degree of small-scale smoothness of the magnetic field's directional change, duration of a candidate structure, thermal speed, and field strength. In a final stage, there is a test for large-scale B-field smoothness within the candidate regions that were identified in the first stage. The scheme was applied to WIND data over the period 1995 through mid-August of 2003 (i.e. over 8.6 years), in order to determine its effectiveness in identifying MC passages of any type (i.e. NS, SN, all S, all N, etc. types). (NS refers to the B component of the magnetic field going from north (+) to south (-) in GSE coordinates.) The distribution of these MC types for WIND is provided. The results of the scheme are compared to WIND MCs previously identified by visual inspection (called MFI MCs) with relatively good agreement, in the sense of capturing a large percentage of MFI MCs, but at the expense of finding a large percentage of "false positives". The scheme is shown to be able to find some previously ignored MCs among the false positives. It should be effective in helping to identify in real time most NS MCs for magnetic storm forecasting. The NS type of MC is expected to be most prevalent in solar cycle 24, which should start around 2007. The scheme is likely to be applicable to solar wind measurements taken well within 1 AU to well beyond it. Keywords. Interplanetary physics (Interplanetary magnetic fields; Solar wind plasma) – Magnetospheric physics (Solar wind-magnetosphere interactions)


2002 ◽  
Vol 20 (7) ◽  
pp. 879-890 ◽  
Author(s):  
P. J. Cargill ◽  
J. M. Schmidt

Abstract. The dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.Key words. Interplanetary physics (interplanetary magnetic fields) Solar physics, astrophysics, and astronomy (flares and mass ejections) Space plasma physics (numerical simulation studies)


Sign in / Sign up

Export Citation Format

Share Document