scholarly journals Modelling interplanetary CMEs using magnetohydrodynamic simulations

2002 ◽  
Vol 20 (7) ◽  
pp. 879-890 ◽  
Author(s):  
P. J. Cargill ◽  
J. M. Schmidt

Abstract. The dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.Key words. Interplanetary physics (interplanetary magnetic fields) Solar physics, astrophysics, and astronomy (flares and mass ejections) Space plasma physics (numerical simulation studies)

2003 ◽  
Vol 21 (6) ◽  
pp. 1377-1382 ◽  
Author(s):  
G. H. Jones ◽  
A. Balogh

Abstract. The Ulysses spacecraft is in a near-polar solar orbit with a period of 6.2 years. The heliospheric magnetic field polarity detected by Ulysses from its 1992 Jupiter encounter to the current time is presented, following ballistic mapping of the polarity information to the solar wind source surface, at approximately 2.5 solar radii. The spacecraft’s first foray to polar latitudes and first rapid heliolatitude scan occurred in 1994–1995, near a minimum in solar activity. The heliospheric current sheet during this period was confined to low heliolatitudes. In 2000–2001, Ulysses returned in situ data from the same region of its orbit as in 1994–1995, but near to the maximum in solar activity. Unlike at solar minimum, heliospheric current sheet crossings were detected at the spacecraft over a wide heliolatitude range, which is consistent with the reversal of the solar magnetic dipole occurring during solar maximum. Despite complexity in the solar wind parameters during the latest fast latitude scan (McComas et al., 2002), the underlying magnetic field structure appears consistent with a simple dipole inclined at a large angle to the solar rotational axis. The most recent data show the heliospheric current sheet returning to lower heliolatitudes, indicating that the dipole and rotational axes are realigning, with the Sun’s magnetic polarity having reversed.Key words. Interplanetary physics (interplanetary magnetic fields; sources of the solar wind) – Solar physics, astrophysics and astronomy (magnetic fields)


2003 ◽  
Vol 21 (6) ◽  
pp. 1347-1357 ◽  
Author(s):  
P. Riley ◽  
Z. Mikić ◽  
J. A. Linker

Abstract. In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun’s approach toward solar maximum; and (2) Ulysses’ second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses’ first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.Key words. Interplanetary physics (Interplanetary magnetic fields; solar wind plasma; sources of the solar wind)


2004 ◽  
Vol 22 (2) ◽  
pp. 673-687 ◽  
Author(s):  
S. Watari ◽  
M. Vandas ◽  
T. Watanabe

Abstract. We analyzed observations of the solar activities and the solar wind parameters associated with large geomagnetic storms near the maximum of solar cycle 23. This analysis showed that strong southward interplanetary magnetic fields (IMFs), formed through interaction between an interplanetary disturbance, and background solar wind or between interplanetary disturbances are an important factor in the occurrence of intense geomagnetic storms. Based on our analysis, we seek to improve our understanding of the physical processes in which large negative Bz's are created which will lead to improving predictions of space weather. Key words. Interplanetary physics (Flare and stream dynamics; Interplanetary magnetic fields; Interplanetary shocks)


2003 ◽  
Vol 21 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
O. E. Malandraki ◽  
E. T. Sarris ◽  
G. Tsiropoula

Abstract. Solar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields)


2005 ◽  
Vol 23 (7) ◽  
pp. 2687-2704 ◽  
Author(s):  
R. P. Lepping ◽  
C.-C. Wu ◽  
D. B. Berdichevsky

Abstract. A scheme is presented whose purpose is twofold: (1) to enable the automatic identification of an interplanetary magnetic cloud (MC) passing Earth from real-time measurements of solar wind magnetic field and plasma quantities or (2) for on-ground post-data collection MC identification ("detection" mode). In the real-time ("prediction") mode the scheme should be applicable to data from a spacecraft upstream of Earth, such as ACE, or to that of any near real-time field and plasma monitoring platform in the solar wind at/near 1AU. The initial identification of a candidate MC-complex is carried out by examining proton plasma beta, degree of small-scale smoothness of the magnetic field's directional change, duration of a candidate structure, thermal speed, and field strength. In a final stage, there is a test for large-scale B-field smoothness within the candidate regions that were identified in the first stage. The scheme was applied to WIND data over the period 1995 through mid-August of 2003 (i.e. over 8.6 years), in order to determine its effectiveness in identifying MC passages of any type (i.e. NS, SN, all S, all N, etc. types). (NS refers to the B component of the magnetic field going from north (+) to south (-) in GSE coordinates.) The distribution of these MC types for WIND is provided. The results of the scheme are compared to WIND MCs previously identified by visual inspection (called MFI MCs) with relatively good agreement, in the sense of capturing a large percentage of MFI MCs, but at the expense of finding a large percentage of "false positives". The scheme is shown to be able to find some previously ignored MCs among the false positives. It should be effective in helping to identify in real time most NS MCs for magnetic storm forecasting. The NS type of MC is expected to be most prevalent in solar cycle 24, which should start around 2007. The scheme is likely to be applicable to solar wind measurements taken well within 1 AU to well beyond it. Keywords. Interplanetary physics (Interplanetary magnetic fields; Solar wind plasma) – Magnetospheric physics (Solar wind-magnetosphere interactions)


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Dai G. Yamazaki ◽  
Kiyotomo Ichiki ◽  
Toshitaka Kajino ◽  
Grant J. Mathews

Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitudeBλand the power spectral indexnBwhich have been deduced from the available CMB observational data by using our computational framework.


2021 ◽  
Author(s):  
Huw Morgan

<p>To date, the inner boundary conditions for solar wind models are either directly or indirectly based on magnetic field extrapolation models of the photosphere. Furthermore, between the photosphere and Earth, there are no other direct empirical constraints on models. New breakthroughs in coronal rotation tomography, applied to coronagraph observations, allow maps of the coronal electron density to be made in the heliocentric height range 4-12 solar radii (Rs). We show that these maps (i) give a new empirical boundary condition for solar wind structure at a height where the coronal magnetic field has become radial, thus avoiding the need to model the complex inner coronal magnetic field, and (ii) give accurate rotation rates for the corona, of crucial importance to the accuracy of solar wind models and forecasts.</p>


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document