scholarly journals Modulation of radio frequency signals by ULF waves

2007 ◽  
Vol 25 (5) ◽  
pp. 1113-1124 ◽  
Author(s):  
C. L. Waters ◽  
T. K. Yeoman ◽  
M. D. Sciffer ◽  
P. Ponomarenko ◽  
D. M. Wright

Abstract. The ionospheric plasma is continually perturbed by ultra-low frequency (ULF; 1–100 mHz) plasma waves that are incident from the magnetosphere. In this paper we present a combined experimental and modeling study of the variation in radio frequency of signals propagating in the ionosphere due to the interaction of ULF wave energy with the ionospheric plasma. Modeling the interaction shows that the magnitude of the ULF wave electric field, e, and the geomagnetic field, B0, giving an e×B0 drift, is the dominant mechanism for changing the radio frequency. We also show how data from high frequency (HF) Doppler sounders can be combined with HF radar data to provide details of the spatial structure of ULF wave energy in the ionosphere. Due to spatial averaging effects, the spatial structure of ULF waves measured in the ionosphere may be quite different to that obtained using ground based magnetometer arrays. The ULF wave spatial structure is shown to be a critical parameter that determines how ULF wave effects alter the frequency of HF signals propagating through the ionosphere.

2005 ◽  
Vol 23 (2) ◽  
pp. 567-577 ◽  
Author(s):  
L. J. Baddeley ◽  
T. K. Yeoman ◽  
D. M. Wright ◽  
K. J. Trattner ◽  
B. J. Kellet

Abstract. Many theories state that Ultra Low Frequency (ULF) waves with a high azimuthal wave number (m) have their energy source in wave-particle interactions, yet this assumption has been rarely tested numerically and thus many questions still remain as to the waves' exact generation mechanism. For the first time, this paper investigates the cause and effect relationship between the driving magnetospheric particle populations and the ULF wave signatures as observed in the conjugate ionosphere by quantitatively examining the energy exchange that occurs. Firstly, a Monte Carlo method is used to demonstrate statistically that the particle populations observed during conjugate ionospheric high m wave events have more free energy available than populations extracted at random. Secondly, this paper quantifies the energy transferred on a case study basis, for two classes of high m waves, by examining magnetospheric Ion Distribution Functions, (IDFs) and directly comparing these with the calculated wave energy dissipated into the conjugate ionosphere. Estimates of the wave energy at the source and the sink are in excellent agreement, with both being of the order of 1010J for a typical high m wave. Ten times more energy (1011J) is transferred from the magnetospheric particle population and dissipated in the ionosphere when considering a subset of high m waves known as giant pulsations (Pgs). Previous work has demonstrated that 1010J is frequently available from non - Maxwellian IDFs at L=6, whereas 1011J is not. The combination of these studies thus provides an explanation for both the rarity of Pgs and the ubiquity of other high m waves in this region.


2020 ◽  
Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>


2018 ◽  
Vol 36 (5) ◽  
pp. 1335-1346 ◽  
Author(s):  
Shuai Zhang ◽  
Anmin Tian ◽  
Quanqi Shi ◽  
Hanlin Li ◽  
Alexander W. Degeling ◽  
...  

Abstract. Ultra-low-frequency (ULF) waves are ubiquitous in the magnetosphere. Previous studies mostly focused on ULF waves in the dayside or near-Earth region (with radial distance R<12 RE). In this study, using the data of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission during the period from 2008 to 2015, the Pc5–6 ULF waves in the tail region with XGSM∗<0, 8 RE<R<32 RE (mostly on the stretched magnetic field lines) are studied statistically. A total of 1089 azimuthal oscillating events and 566 radial oscillating events were found. The statistical results show that both the azimuthal and radial oscillating events in the magnetotail region (12 RE<R<32 RE) are more frequently observed in the post-midnight region. The frequency decreases with increasing radial distance from Earth for both azimuthal oscillating events (8 RE<R<16 RE) and radial oscillating events (8 RE<R<14 RE), which is consistent with the field line resonances theory. About 52 % of events (including the azimuthal and radial oscillating events) are standing waves in the region of 8–16 RE, while only 2 % are standing waves in the region of 16–32 RE. There is no obvious dawn–dusk asymmetry of ULF wave frequency for events in 8 RE<R<32 RE, which contrasts with the obvious dawn–dusk asymmetry found by previous studies in the inner magnetosphere (4 RE<R<9 RE). An examination for possible statistical relationships between the ULF wave parameters and substorm occurrences is carried out. We find that the wave frequency is higher after the substorm onset than before it, and the frequency differences are more obvious in the midnight region than in the flank region.


2005 ◽  
Vol 23 (11) ◽  
pp. 3457-3471 ◽  
Author(s):  
M. D. Sciffer ◽  
C. L. Waters ◽  
F. W. Menk

Abstract. A one dimensional, computational model for the propagation of ultra low frequency (ULF; 1-100 mHz) wave fields from the Earth's magnetosphere through the ionosphere, atmosphere and into the ground is presented. The model is formulated to include solutions for high latitudes where the Earth's magnetic field, (B0), is near vertical and for oblique magnetic fields applicable at lower latitudes. The model is used to investigate the wave polarisation azimuth in the magnetosphere compared with the ground wave fields, as a function of the dip angle of B0. We find that for typical ULF wave scale sizes, a 90° rotation of the wave polarisation azimuth from the magnetosphere to the ground occurs at high latitudes. However, this effect does not necessarily occur at lower latitudes in all cases. We show that the degree to which the wave polarisation azimuth rotates critically depends on the properties of the compressional ULF wave mode.


2015 ◽  
Vol 33 (11) ◽  
pp. 1431-1442 ◽  
Author(s):  
M. Georgiou ◽  
I. A. Daglis ◽  
E. Zesta ◽  
G. Balasis ◽  
I. R. Mann ◽  
...  

Abstract. Geospace magnetic storms, driven by the solar wind, are associated with increases or decreases in the fluxes of relativistic electrons in the outer radiation belt. We examine the response of relativistic electrons to four intense magnetic storms, during which the minimum of the Dst index ranged from −105 to −387 nT, and compare these with concurrent observations of ultra-low-frequency (ULF) waves from the trans-Scandinavian IMAGE magnetometer network and stations from multiple magnetometer arrays available through the worldwide SuperMAG collaboration. The latitudinal and global distribution of Pc5 wave power is examined to determine how deep into the magnetosphere these waves penetrate. We then investigate the role of Pc5 wave activity deep in the magnetosphere in enhancements of radiation belt electrons population observed in the recovery phase of the magnetic storms. We show that, during magnetic storms characterized by increased post-storm electron fluxes as compared to their pre-storm values, the earthward shift of peak and inner boundary of the outer electron radiation belt follows the Pc5 wave activity, reaching L shells as low as 3–4. In contrast, the one magnetic storm characterized by irreversible loss of electrons was related to limited Pc5 wave activity that was not intensified at low L shells. These observations demonstrate that enhanced Pc5 ULF wave activity penetrating deep into the magnetosphere during the main and recovery phase of magnetic storms can, for the cases examined, distinguish storms that resulted in increases in relativistic electron fluxes in the outer radiation belts from those that did not.


2021 ◽  
Author(s):  
Sarah Bentley ◽  
Rhys Thompson ◽  
Clare Watt ◽  
Jennifer Stout ◽  
Teo Bloch

&lt;p&gt;We present and analyse a freely-available model of the power found in ultra-low frequency waves (ULF, 1-15 mHz) throughout Earth&amp;#8217;s magnetosphere. Predictions can be used to test our understanding of magnetospheric dynamics, while accurate models of these waves are required to characterise the energisation and transport of radiation belt electrons in space weather.&lt;/p&gt;&lt;p&gt;This model is constructed using decision tree ensembles, which iteratively partition the given parameter space into variable size bins. Wave power is determined by physical driving parameters (e.g. solar wind properties) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency). As a parameterised model, there is no guarantee that individual physical processes can be extracted and analysed. However, by iteratively considering smaller scale driving processes, we identify predominant wave drivers and find that solar wind driving of ULF waves are moderated by internal magnetospheric conditions. Significant remaining uncertainty occurs with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future.&lt;/p&gt;&lt;p&gt;Models such as this may be used to create global magnetospheric &amp;#8220;maps&amp;#8221; of predicted wave power which may then be used to create radial diffusion coefficients determining the effect of ULF waves on radiation belt electrons.&lt;/p&gt;


2012 ◽  
Vol 30 (12) ◽  
pp. 1751-1768 ◽  
Author(s):  
G. Balasis ◽  
I. A. Daglis ◽  
E. Zesta ◽  
C. Papadimitriou ◽  
M. Georgiou ◽  
...  

Abstract. We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail) for signatures of ultra low frequency (ULF) waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz) in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz) into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO) we are able to reliably detect Pc3 (but not Pc4–5) waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.


2021 ◽  
Author(s):  
Primož Kajdič ◽  
Yann Pfau-Kempf ◽  
Lucile Turc ◽  
Andrew Dimmock ◽  
Minna Palmroth

&lt;p&gt;We study the interaction of upstream ultra-low frequency (ULF) waves with collisionless shocks by analyzing the outputs of eleven 2.5D local hybrid simulation models. Our simulated shocks have Alfv&amp;#233;nic Mach numbers between 4.29-7.42 and their &amp;#952;&lt;sub&gt;BN&lt;/sub&gt; angles are 15&amp;#186;, 30&amp;#186;, 45&amp;#186; and 50&amp;#186;. Thus all are quasi-parallel or marginally quasi-perpendicular shocks. Upstream of all of the shocks the ULF wave foreshock develops. It is populated by transverse and compressive ULF magnetic field fluctuations that propagate upstream in the rest frame of upstream plasma. We show that the properties of the upstream waves reflect on the properties of the shock ripples. We also show that due to these ripples, as different portions of upstream waves reach the shocks, they encounter shock sections with different properties, such as the downstream magnetic field and the orientation of the local shock normals. This means that the waves are not simply transmitted into the downstream region but are heavily processed by the shocks. The identity of upstream fluctuations is largely lost, since the downstream fluctuations do not resemble the upstream waves in their shape, waveform extension, orientation nor in their wavelength. However some features are conserved. For example, the Fourier spectra of upstream waves present a bump or flattening at wavelengths corresponding to those of the upstream ULF waves. Most of the corresponding compressive downstream spectra also exhibit these features, while transverse downstream spectra are largely featureless.&lt;/p&gt;


2017 ◽  
Vol 35 (4) ◽  
pp. 879-884 ◽  
Author(s):  
Elisabet Liljeblad ◽  
Tomas Karlsson

Abstract. Ultra-low-frequency (ULF) waves in the  ∼  20–40 mHz range are frequently observed in the Mercury magnetosphere using Mercury Surface Space Environment Geochemistry, and Ranging (MESSENGER) magnetic field data. The majority of these waves have very similar characteristics to the waves likely driven by Kelvin–Helmholtz (KH) ULF waves (which are retained as a subset of the wave events studied in this paper) identified in a previous study. Significant ULF wave activity is observed in the dawn sector of the magnetosphere. This indicates that Mercury KH waves may be more common between 6 and 12 magnetic local time than previously predicted and that magnetospheric ULF waves in the frequency band  ∼ 20–40 mHz can be used as a detection tool for Hermean KH waves.


Sign in / Sign up

Export Citation Format

Share Document