scholarly journals Effects on magnetic reconnection of a density asymmetry across the current sheet

2008 ◽  
Vol 26 (8) ◽  
pp. 2471-2483 ◽  
Author(s):  
K. G. Tanaka ◽  
A. Retinò ◽  
Y. Asano ◽  
M. Fujimoto ◽  
I. Shinohara ◽  
...  

Abstract. The magnetopause (MP) reconnection is characterized by a density asymmetry across the current sheet. The asymmetry is expected to produce characteristic features in the reconnection layer. Here we present a comparison between the Cluster MP crossing reported by Retinò et al. (2006) and virtual observations in two-dimensional particle-in-cell simulation results. The simulation, which includes the density asymmetry but has zero guide field in the initial condition, has reproduced well the observed features as follows: (1) The prominent density dip region is detected at the separatrix region (SR) on the magnetospheric (MSP) side of the MP. (2) The intense electric field normal to the MP is pointing to the center of the MP at the location where the density dip is detected. (3) The ion bulk outflow due to the magnetic reconnection is seen to be biased towards the MSP side. (4) The out-of-plane magnetic field (the Hall magnetic field) has bipolar rather than quadrupolar structure, the latter of which is seen for a density symmetric case. The simulation also showed rich electron dynamics (formation of field-aligned beams) in the proximity of the separatrices, which was not fully resolved in the observations. Stepping beyond the simulation-observation comparison, we have also analyzed the electron acceleration and the field line structure in the simulation results. It is found that the bipolar Hall magnetic field structure is produced by the substantial drift of the reconnected field lines at the MSP SR due to the enhanced normal electric field. The field-aligned electrons at the same MSP SR are identified as the gun smokes of the electron acceleration in the close proximity of the X-line. We have also analyzed the X-line structure obtained in the simulation to find that the density asymmetry leads to a steep density gradient in the in-flow region, which may lead to a non-stationary behavior of the X-line when three-dimensional freedom is taken into account.

Author(s):  
Kyung Sun Park

We performed high-resolution three-dimensional global MHD simulations to determine the impact of weak southward interplanetary magnetic field (IMF) (Bz = −2 nT) and slow solar wind to the Earth’s magnetosphere and ionosphere. We considered two cases of differing, uniform time resolution with the same grid spacing simulation to find any possible differences in the simulation results. The simulation results show that dayside magnetic reconnection and tail reconnection continuously occur even during the weak and steady southward IMF conditions. A plasmoid is generated on closed plasma sheet field lines. Vortices are formed in the inner side of the magnetopause due to the viscous-like interaction, which is strengthened by dayside magnetic reconnection. We estimated the dayside magnetic reconnection which occurred in relation to the electric field at the magnetopause and confirmed that the enhanced electric field is caused by the reconnection and the twisted structure of the electric field is due to the vortex. The simulation results of the magnetic field and the plasma properties show quasi-periodic variations with a period of 9–11 min between the appearances of vortices. Also the peak values of the cross-polar cap potential are both approximately 50 kV, the occurrence time of dayside reconnections are the same, and the polar cap potential patterns are the same in both cases. Thus, there are no significant differences in outcome between the two cases.


2000 ◽  
Vol 195 ◽  
pp. 311-312
Author(s):  
Y. E. Litvinenko

Fast magnetic reconnection in extragalactic jets leads to electron acceleration by the DC electric field in the reconnecting current sheet. The maximum electron energy (γ > 106) and the acceleration time (< 106 s) are determined by the magnetic field dynamics in the sheet.


2009 ◽  
Vol 75 (2) ◽  
pp. 159-181 ◽  
Author(s):  
V. V. ZHARKOVA ◽  
O. V. AGAPITOV

AbstractElectron and proton acceleration by a drifted super-Dreicer electric field is investigated in a strongly compressed non-neutral reconnecting current sheet (NRCS). The guiding field is assumed to be constant within a reconnecting current sheet (RCS) and parallel to the direction of the drifted electric field. The other two magnetic field components, transverse and tangential, are considered to vary exponentially and linearly with distances from the X-nullpoint. The proton and electron energy spectra are calculated numerically in a model RCS with different magnetic field topologies by solving an equation of motion in the test-particle approach with some test with a particle-in-cell (PIC) approach. Three kinds electric field generated inside a RCS are considered: a drifted electric field caused by the plasma inflows formed during a magnetic reconnection process; a polarization electric field induced by the accelerated protons and electrons; and a turbulent electric field induced by instabilities generated by accelerated particles. Electron and proton densities, and energy spectra inside a RCS and at ejection are found to be strongly affected by the magnetic field topology: for stronger magnetic fields the spectra are softer having a small higher-energy cutoff while for weaker magnetic fields the spectra are harder with much larger upper cutoff energies. Depending on the magnetic component ratios and drifted electric field magnitude, particles are found to be ejected either as quasi-thermal flows with very high temperatures or as focused power-law beams. A polarization field is found to reduce the acceleration time inside a RCS and to increase the energy gained by particles at acceleration by a pure drifted electric field by a few orders of magnitude. The turbulent electric field induced by the two beam instabilities of the same kind of particles leads to a significant increase in the number of particles with higher energies resulting in a flattening of their energy spectra.


2009 ◽  
Vol 75 (5) ◽  
pp. 619-636 ◽  
Author(s):  
TARAS V. SIVERSKY ◽  
VALENTINA V. ZHARKOVA

AbstractThe acceleration of protons and electrons in a reconnecting current sheet (RCS) is simulated with a particle-in-cell (PIC) 2D3V (two-dimensional in space and three-dimensional in velocity space) code for the proton-to-electron mass ratio of 100. The electromagnetic configuration forming the RCS incorporates all three components of the magnetic field (including the guiding field) and a drifted electric field. PIC simulations reveal that there is a polarization electric field that appears during acceleration owing to a separation of electrons from protons towards the midplane of the RCS. If the plasma density is low, the polarization field is weak and the particle trajectories in the PIC simulations are similar to those in the test particle (TP) approach. For the higher plasma density the polarization field is stronger and it affects the trajectories of protons by increasing their orbits during acceleration. This field also leads to a less asymmetrical abundance of ejected protons towards the midplane in comparison with the TP approach. For a given magnetic topology electrons in PIC simulations are ejected to the same semispace as protons, in contrast to the TP results. This happens because the polarization field extends far beyond the thickness of a current sheet. This field decelerates the electrons, which are initially ejected into the semispace opposite to the protons, returns them back to the RCS, and, eventually, leads to the electron ejection into the same semispace as protons. The energy distribution of the ejected electrons is rather wide and single-peaked, in contrast to the two-peak narrow-energy distribution obtained in the TP approach. In the case of a strong guiding field, the mean energy of the ejected electrons is found to be smaller than it is predicted analytically and by the TP simulations. The beam of accelerated electrons is also found to generate turbulent electric field in the form of Langmuir waves.


2010 ◽  
Vol 28 (6) ◽  
pp. 1327-1331 ◽  
Author(s):  
A. Vaivads ◽  
A. Retinò ◽  
Yu. V. Khotyaintsev ◽  
M. André

Abstract. We show that in the case of magnetic reconnection where the Alfvén velocity is much higher in the plasma on one side of the current sheet than the other, an Alfvén edge is formed. This edge is located between the electron and ion edges on the high Alfvén velocity side of the current sheet. The Alfvén edge forms because the Alfvén wave generated near the X-line will propagate faster than the accelerated ions forming the ion edge. We discuss possible generation mechanism and the polarization of the Alfvén wave in the case when higher Alfvén speed is due to larger magnetic field and smaller plasma density, as in the case of magnetopause reconnection. The Alfvén wave can be generated due to Hall dynamics near the X-line. The Alfvén wave pulse has a unipolar electric field and the parallel current will be such that the outer current on the high magnetic field side is flowing away from the X-line. Understanding Alfvén edges is important for understanding the separatrix regions at the boundaries of reconnection jets. We present an example of Alfvén edge observed by the Cluster spacecraft at the magnetopause.


2018 ◽  
Vol 619 ◽  
pp. A82
Author(s):  
Man Zhang ◽  
Yu Fen Zhou ◽  
Xue Shang Feng ◽  
Bo Li ◽  
Ming Xiong

In this paper, we have used a three-dimensional numerical magnetohydrodynamics model to study the reconnection process between magnetic cloud and heliospheric current sheet. Within a steady-state heliospheric model that gives a reasonable large-scale structure of the solar wind near solar minimum, we injected a spherical plasmoid to mimic a magnetic cloud. When the magnetic cloud moves to the heliospheric current sheet, the dynamic process causes the current sheet to become gradually thinner and the magnetic reconnection begin. The numerical simulation can reproduce the basic characteristics of the magnetic reconnection, such as the correlated/anticorrelated signatures in V and B passing a reconnection exhaust. Depending on the initial magnetic helicity of the cloud, magnetic reconnection occurs at points along the boundary of the two systems where antiparallel field lines are forced together. We find the magnetic filed and velocity in the MC have a effect on the reconnection rate, and the magnitude of velocity can also effect the beginning time of reconnection. These results are helpful in understanding and identifying the dynamic process occurring between the magnetic cloud and the heliospheric current sheet.


1996 ◽  
Vol 3 (10) ◽  
pp. 3556-3563 ◽  
Author(s):  
S. B. Swanekamp ◽  
J. M. Grossmann ◽  
A. Fruchtman ◽  
B. V. Oliver ◽  
P. F. Ottinger

2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

&lt;p&gt;Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon&amp;#8211;midnight meridional plane simulation is extended in the dawn&amp;#8211;dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document