scholarly journals Virtual satellite observations of plasmoids generated by fast reconnection in the geomagnetic tail

2011 ◽  
Vol 29 (8) ◽  
pp. 1411-1422 ◽  
Author(s):  
M. Ugai

Abstract. The present paper studies fundamental features of plasmoid propagation by virtual satellite observations in the simulation box. The plasmoid domain is divided into the plasmoid reconnection region P, where magnetized plasmas with reconnected field lines, heated by dissipation mechanisms of fast reconnection, are accumulated, and the plasmoid core region C, where magnetized plasmas with sheared field lines, initially embedded in the current sheet, is adiabatically compressed. When the virtual satellite is located in a position through which the plasmoid core region passes, it detects distinct changes in quantities at the interface between the regions P and C, where the north-south field component Bz has the bipolar profile and the sheared field component By has the peak value. The observed magnetic field profile is, both quantitatively and qualitatively, in good agreement with the standard one detected by actual satellite observations, although when the satellite location is very close to the X neutral line, where reconnection occurs, the Bz field profile becomes dipolarization-like rather than bipolar. If the satellite detects only the plasmoid region P outside region C, the standard magnetic field profile becomes obscure even if notable plasmoid signatures, such as enhanced plasma temperature and plasma flow, are observed. Unlike the traditional flux rope model based on multiple reconnections, it is demonstrated that the standard magnetic field profile, observed for plasmoids propagating in the geomagnetic tail, is the direct outcome of the single fast reconnection evolution.

2011 ◽  
Vol 29 (1) ◽  
pp. 147-156 ◽  
Author(s):  
M. Ugai

Abstract. As a sequence of Ugai (2010b), the present paper studies in detail the structure and dynamics of large-scale (principal) plasmoid, generated by the fast reconnection evolution in a sheared current sheet with no initial northward field component. The overall plasmoid domain is divided into the plasmoid reconnection region P and the plasmoid core region C. In the region P, the magnetized plasma with reconnected field lines are accumulated, whereas in the region C, the plasma, which was intially embedded in the current sheet and has been ejected away by the reconnection jet, is compressed and accumulated. In the presence of the sheared magnetic field in the east-west direction in the current sheet, the upper and lower parts of the reconnection region P are inversely shifted in the east-west directions. Accordingly, the plasmoid core region C with the accumulated sheared field lines is bent in the north-south direction just ahead of the plasmoid center x=XC, causing the magnetic field component in the north-south direction, whose sign is always opposite to that of the reconnected field lines. Therefore, independently of the sign of the initial sheared field, the magnetic field component Bz in the north-south direction has the definite bipolar profile around XC along the x-axis. At x=XC, the sheared field component has the peak value, and as the sheared fields accumulated in the region C become larger, the bipolar field profile becomes more distinct.


2010 ◽  
Vol 28 (8) ◽  
pp. 1511-1521 ◽  
Author(s):  
M. Ugai

Abstract. On the basis of the spontaneous fast reconnection model, three-dimensional magnetic field profiles associated with a large-scale plasmoid propagating along the antiparallel magnetic fields are studied in the general sheared current sheet system. The plasmoid is generated ahead of the fast reconnection jet as a result of distinct compression of the magnetized plasma. Inside the plasmoid, the sheared (east-west) field component has the peak value at the plasmoid center located at x=XC, where the north-south field component changes its sign. The plasmoid center corresponds to the so-called contact discontinuity that bounds the reconnected field lines in x<XC and the field lines without reconnection in x>XC. Hence, contray to the conventional prediction, the reconnected sheared field lines in x<XC are not spiral or helical, since they cannot be topologically connected to the field lines in x>XC. It is demonstrated that the resulting profiles of magnetic field components inside the plasmoid are, in principle, consistent with satellite observations. In the ambient magnetic field region outside the plasmoid too, the magnetic field profiles are in good agreement with the well-known observations of traveling compression regions (TCRs).


1992 ◽  
Vol 258 ◽  
Author(s):  
F.S. Pool ◽  
J.M. Essick ◽  
Y.H. Shing ◽  
R.T. Mather

ABSTRACTThe magnetic field profile of an electron cyclotron resonance (ECR) microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. Films of a-Si:H were deposited at pressures of 0.7 mTorr and 5 mTorr with a H2/SiH4 ratio of approximately three. The mobility gap density of states ND, deposition rate and light to dark conductivity were determined for the a-Si:H films. This data was correlated to the magnetic field profile of the plasma, which was characterized by Langmuir probe measurements of the ion current density. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1×1016 to 1×1017 at 0.7 mTorr and 1×1016 to 5×1017 at 5 mTorr. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration.


1987 ◽  
Vol 26 (Part 1, No. 10) ◽  
pp. 1727-1732
Author(s):  
Sukeomi Ogi ◽  
Masaharu Shiratani ◽  
Yukio Watanabe

2011 ◽  
Vol 29 (2) ◽  
pp. 263-274 ◽  
Author(s):  
H. Comişel ◽  
M. Scholer ◽  
J. Soucek ◽  
S. Matsukiyo

Abstract. We have performed full particle electromagnetic simulations of a quasi-perpendicular shock. The shock parameters have been chosen to be appropriate for the quasi-perpendicular Earth's bow shock observed by Cluster on 24 January 2001 (Lobzin et al., 2007). We have performed two simulations with different ion to electron mass ratio: run 1 with mi/me=1840 and run 2 with mi/me=100. In run 1 the growth rate of the modified two-stream instability (MTSI) is large enough to get excited during the reflection and upstream gyration of part of the incident solar wind ions. The waves due to the MTSI are on the whistler mode branch and have downstream directed phase velocities in the shock frame. The Poynting flux (and wave group velocity) far upstream in the foot is also directed in the downstream direction. However, in the density and magnetic field compression region of the overshoot the waves are refracted and the Poynting flux in the shock frame is directed upstream. The MTSI is suppressed in the low mass ratio run 2. The low mass ratio run shows more clearly the non-stationarity of the shock with a larger time scale of the order of an inverse ion gyrofrequency (Ωci): the magnetic field profile flattens and steepens with a period of ~1.5Ωci−1. This non-stationarity is different from reformation seen in previous simulations of perpendicular or quasi-perpendicular shocks. Beginning with a sharp shock ramp the large electric field in the normal direction leads to high reflection rate of solar wind protons. As they propagate upstream, the ion bulk velocity decreases and the magnetic field increases in the foot, which results in a flattening of the magnetic field profile and in a decrease of the normal electric field. Subsequently the reflection rate decreases and the whole shock profile steepens again. Superimposed on this 'breathing' behavior are in the realistic mass ratio case the waves due to the MTSI. The simulations lead us to a re-interpretation of the 24 January 2001 bow shock observations reported by Lobzin et al. (2007). It is suggested that the high frequency waves observed in the magnetic field data are due to the MTSI and are not related to a nonlinear phase standing whistler. Different profiles at the different spacecraft are due to the non-stationary behavior on the larger time scale.


2013 ◽  
Vol 26 (7) ◽  
pp. 075005 ◽  
Author(s):  
F Rogeri ◽  
R Zadorosny ◽  
P N Lisboa-Filho ◽  
E Sardella ◽  
W A Ortiz

2009 ◽  
Vol 469 (5-6) ◽  
pp. 211-215 ◽  
Author(s):  
P.K. Nayak ◽  
U. Prasad ◽  
A.N. Sharma ◽  
D. Patel ◽  
S. Kedia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document