scholarly journals Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays

2015 ◽  
Vol 2 ◽  
pp. 57-62 ◽  
Author(s):  
M. Kroll ◽  
J. Becker Tjus ◽  
B. Eichmann ◽  
N. Nierstenhöfer

Abstract. It is generally believed that the cosmic ray spectrum below the knee is of Galactic origin, although the exact sources making up the entire cosmic ray energy budget are still unknown. Including effects of magnetic amplification, Supernova Remnants (SNR) could be capable of accelerating cosmic rays up to a few PeV and they represent the only source class with a sufficient non-thermal energy budget to explain the cosmic ray spectrum up to the knee. Now, gamma-ray measurements of SNRs for the first time allow to derive the cosmic ray spectrum at the source, giving us a first idea of the concrete, possible individual contributions to the total cosmic ray spectrum. In this contribution, we use these features as input parameters for propagating cosmic rays from its origin to Earth using GALPROP in order to investigate if these supernova remnants reproduce the cosmic ray spectrum and if supernova remnants in general can be responsible for the observed energy budget.

2013 ◽  
Vol 9 (S296) ◽  
pp. 305-314
Author(s):  
Jacco Vink

AbstractSupernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the cosmic ray energy density and spectrum in the Galaxy supernova remnant should use 10% of the explosion energy to accelerate particles, and about 99% of the accelerated particles should be protons and other atomic nuclei.Over the last decade a lot of progress has been made in providing evidence that supernova remnant can accelerate protons to very high energies. The evidence consists of, among others, X-ray synchrotron radiation from narrow regions close to supernova remnant shock fronts, indicating the presence of 10-100 TeV electrons, and providing evidence for amplified magnetic fields, gamma-ray emission from both young and mature supernova remnants. The high magnetic fields indicate that the condition for accelerating protons to >1015 eV are there, whereas the gamma-ray emission from some mature remnants indicate that protons have been accelerated.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2020 ◽  
Vol 497 (3) ◽  
pp. 3581-3590
Author(s):  
Emma de Oña Wilhelmi ◽  
Iurii Sushch ◽  
Robert Brose ◽  
Enrique Mestre ◽  
Yang Su ◽  
...  

ABSTRACT Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2–0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows a detailed modelling of its radiation from radio to high energies. We reanalysed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favours a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ∼100 µG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ∼10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.


2021 ◽  
Vol 922 (1) ◽  
pp. 7
Author(s):  
Tsuyoshi Inoue ◽  
Alexandre Marcowith ◽  
Gwenael Giacinti ◽  
Allard Jan van Marle ◽  
Shogo Nishino

Abstract Galactic cosmic rays are believed to be accelerated at supernova remnants. However, whether supernova remnants can be PeV is still very unclear. In this work we argue that PeV cosmic rays can be accelerated during the early phase of a supernova blast-wave expansion in dense red supergiant winds. We solve in spherical geometry a system combining a diffusive–convection equation that treats cosmic-ray dynamics coupled to magnetohydrodynamics to follow gas dynamics. A fast shock expanding in a dense ionized wind is able to trigger fast, non-resonant streaming instability over day timescales and energizes cosmic rays even under the effect of p–p losses. We find that such environments produce PeV blast waves, although the maximum energy depends on various parameters such as the injection rate and mass-loss rate of the winds. Multi-PeV energies can be reached if the progenitor mass-loss rates are of the order of 10−3 M ⊙ yr−1. It has been recently proposed that, prior to the explosion, hydrogen-rich massive stars can produce enhanced mass-loss rates. These enhanced rates would then favor the production of a PeV phase in early times after shock breakout.


2012 ◽  
Vol 19 (3) ◽  
pp. 351-364 ◽  
Author(s):  
P. Desiati ◽  
A. Lazarian

Abstract. Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.


2013 ◽  
Vol 9 (S296) ◽  
pp. 287-294
Author(s):  
Marianne Lemoine-Goumard

AbstractIn the past few years, gamma-ray astronomy has entered a golden age. At TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes has increased this number to more than one hundred. At GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first 2 years of operation. The recent detection and unprecedented morphological studies of gamma-ray emission from shell-type supernova remnants is of great interest, as these analyses are directly linked to the long standing issue of the origin of the cosmic-rays. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In the following, I will review the most relevant results of gamma ray astronomy concerning supernova remnants (shell-type and middle-age interacting with molecular clouds).


2020 ◽  
Vol 493 (2) ◽  
pp. 1960-1981
Author(s):  
A A L-Zetoun ◽  
A Achterberg

ABSTRACT We consider anisotropic diffusion of Galactic cosmic rays in the Galactic magnetic field, using the Jansson–Farrar model for the field. In this paper, we investigate the influence of source position on the cosmic ray flux at the Earth in two ways: (1) by considering the contribution from cosmic ray sources located in different intervals in Galactocentric radius, and (2) by considering the contribution from a number of specific and individual close-by supernova remnants. Our calculation is performed by using a fully three-dimensional stochastic method. This method is based on the numerical solution of a set of stochastic differential equations, equivalent to Itô formulation, that describes the propagation of the Galactic cosmic rays.


2019 ◽  
Vol 209 ◽  
pp. 01041
Author(s):  
Margherita Di Santo

DAMPE (DArk Matter Particle Explorer) is a space mission project promoted by the Chinese Academy of Sciences (CAS), in collaboration with Universities and Institutes from China, Italy and Switzerland. The detector is collecting data in a stable sun-synchronous orbit lasting 95 minutes at an altitude of about 500 km. It has been launched in December 17th, 2015, from the Jiuquan Satellite Launch Center, in the Gobi Desert. The main goals of the mission are: indirect search for Dark Matter, looking for signatures in the electron and photon spectra with energies up to 10 TeV; analysis of the flux and composition of primary Cosmic Rays with energies up to hundreds of TeV; high energy gamma-ray astronomy. Preliminary results about the Helium flux and Cosmic Ray composition will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document