scholarly journals Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

2013 ◽  
Vol 10 (10) ◽  
pp. 6601-6608 ◽  
Author(s):  
T. Hansen ◽  
B. Gardeler ◽  
B. Matthiessen

Abstract. Total dissolved inorganic carbon (CT) is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1) compared to natural open ocean seawater (~1950–2200 μmol kg−1). The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures) or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

2013 ◽  
Vol 10 (3) ◽  
pp. 4439-4460 ◽  
Author(s):  
T. Hansen ◽  
B. Gardeler ◽  
B. Matthiessen

Abstract. Total dissolved inorganic carbon (CT) is one of the most frequently measured parameters in order to calculate the partial pressure of carbon dioxide in seawater. Its measurement has become increasingly important because of the rising interest in the biological effects of acidification. The coulometric- and infrared detection methods are favoured to precisely quantify CT. However, these methods were not validated for CT samples from acidification experiments investigating biological responses to manipulated partial pressure of carbon dioxide (pCO2), which need an extended CT measurement range (~1250–2400 μmol kg−1) compared to natural open ocean seawater samples (~1950–2200 μmol kg−1). Additionally, the requirement of total sample amounts between 0.25–1 L seawater in the coulometric- and infrared detection methods exclude their use for experiments working with smaller volumes. Precise CT analytics also become difficult with high amounts of biomass (e.g. phytoplankton cultures) or even impossible in the presence of planktonic calcifiers without sample pre-filtration. However, filtration can alter CT concentration through gas exchange. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a highly sensitive CT-analyzer. Our technique is able to provide a measurement precision of ± 3.7 μmol kg−1 and an accuracy of ± 1.2 μmol kg−1 in a CT range typically applied in acidification experiments. It requires sample sizes of only 200 μL taken from 10 mL pre-filtered samples or from a 10 mL sub-sampled seawater reference (Dickson standard). Our method is simple, reliable and with low cumulative analytical costs. Hence, it is potentially attractive for all scientists experimentally manipulating the seawater carbonate system.


2014 ◽  
Vol 11 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
E. M. Thaysen ◽  
S. Jessen ◽  
P. Ambus ◽  
C. Beier ◽  
D. Postma ◽  
...  

Abstract. Dissolved inorganic carbon (DIC) fluxes across the vadose zone are influenced by a complex interplay of biological, chemical and physical factors. A novel soil mesocosm system was evaluated as a tool for providing information on the mechanisms behind DIC percolation to the groundwater from unplanted soil. Carbon dioxide partial pressure (pCO2), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO2 varied between 0.2 and 1.1%, and the alkalinity was 0.1–0.6 meq L−1. The measured cumulative effluent DIC flux over the 78-day experimental period was 185–196 mg L−1 m−2 and in the same range as estimates derived from pCO2 and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux. Our results indicate that the mesocosm system is a promising tool for studying DIC percolation fluxes and other biogeochemical transport processes in unsaturated environments.


Radiocarbon ◽  
1978 ◽  
Vol 20 (3) ◽  
pp. 455-460 ◽  
Author(s):  
R A Parker ◽  
W M Sackett

Organic and carbonate carbon in sediments deposited in the Cariaco Basin and on the Mississippi River Delta and the total dissolved inorganic carbon in four water column profiles comprise the samples in this list. Except as noted below the samples were processed using the benzene synthesis and other procedures described by Mathews, et al (1972).


2015 ◽  
Vol 49 (7) ◽  
pp. 4441-4449 ◽  
Author(s):  
Zhaohui Aleck Wang ◽  
Frederick N. Sonnichsen ◽  
Albert M. Bradley ◽  
Katherine A. Hoering ◽  
Thomas M. Lanagan ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1926
Author(s):  
Paolo Madonia ◽  
Marianna Cangemi ◽  
Ygor Oliveri ◽  
Carlo Germani

Groundwater from karst circulation systems of Central Italy were sampled and analyzed, in 2018, for delineating a preliminary, general geochemical framework of their relationship with neotectonics, in an area characterized by a frequent and often destructive seismicity. We determined field physical-chemical parameters, concentrations of main dissolved ions and gases and isotopic composition of water (δ18O, δD) and total dissolved inorganic carbon (δ13C TDIC). We discriminated between “normal” hydro-karst systems and multi-component aquifers, composed of meteoric groundwater that have also interacted with rocks of different lithological nature and/or deep fluids. These multicomponent aquifers are of potential interest in the monitoring of neotectonics activity, because changes in the stress field associated with the preparatory phase of an earthquake may affect the permeability of rocks, in turn causing variation of their chemical-isotopic character. The geographical distribution of these aquifers seems to be controlled by tectonics. In fact, the Olevano–Antrodoco–Sibillini thrust separates the more anomalous sites, located westwards of it, from the groundwater bodies at its eastern side, showing a more typical karst character.


Sign in / Sign up

Export Citation Format

Share Document