scholarly journals Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition

2014 ◽  
Vol 11 (18) ◽  
pp. 5199-5213 ◽  
Author(s):  
B. Maestrini ◽  
S. Abiven ◽  
N. Singh ◽  
J. Bird ◽  
M. S. Torn ◽  
...  

Abstract. Pyrogenic organic matter (PyOM) plays an important role as a stable carbon (C) sink in the soils of terrestrial ecosystems. However, uncertainties remain about in situ turnover rates of fire-derived PyOM in soil, the main processes leading to PyOM-C and nitrogen (N) losses from the soil, and the role of N availability on PyOM cycling in soils. We measured PyOM and native soil organic carbon losses from the soil as carbon dioxide and dissolved organic carbon (DOC) using additions of highly 13C-labelled PyOM (2.03 atom %) and its precursor pinewood during 1 year in a temperate forest soil. The field experiment was carried out under ambient and increased mineral N deposition (+60 kg N-NH4NO3 ha−1 year−1). The results showed that after 1 year: (1) 0.5% of PyOM-C and 22% of wood-C were mineralized as CO2, leading to an estimated turnover time of 191 and 4 years, respectively; (2) the quantity of PyOM and wood lost as dissolved organic carbon was negligible (0.0004 ± 0.0003% and 0.022 ± 0.007% of applied-C, respectively); and (3) N additions decreased cumulative PyOM mineralization by 43%, but did not affect cumulative wood mineralization and did not affect the loss of DOC from PyOM or wood. We conclude that mineralization to CO2 was the main process leading to PyOM losses during the first year of mineralization in a forest soil, and that N addition can decrease PyOM-C cycling, while added N showed no effect on wood C cycling.

2014 ◽  
Vol 11 (1) ◽  
pp. 1-31 ◽  
Author(s):  
B. Maestrini ◽  
S. Abiven ◽  
N. Singh ◽  
J. Bird ◽  
M. S. Torn ◽  
...  

Abstract. Pyrogenic organic matter (PyOM) plays an important role as a stable carbon (C) sink in the terrestrial ecosystems. However, uncertainties remain about in situ turnover rates of PyOM in soil, the main processes leading to PyOM C and nitrogen (N) losses from the soil, and the role of N availability in PyOM cycling in soils. We measured PyOM and native soil organic carbon losses from the soil as carbon dioxide and dissolved organic carbon (DOC) using additions of highly 13C-labelled PyOM (2.03 atom %) and its precursor pinewood during one year in a temperate forest soil. The field experiment was carried out under ambient and increased mineral N deposition (+60 kg N ha−1 yr−1). The results showed that after one year: (1) 0.5% of PyOM-C and 22% of wood-C were mineralized as CO2, leading to an estimate of minimum turnover time of 191 and 4 yr respectively, (2) the quantity of PyOM and wood lost as dissolved organic carbon was negligible (0.0004 ± 0.0003% and 0.022 ± 0.007 respectively); and (3) N additions decreased cumulative PyOM mineralization by 43%, but did not affect cumulative wood mineralization and did not affect the loss of DOC from PyOM or wood. We conclude that mineralization to CO2 was the main process leading to PyOM losses during the first year of decomposition in a forest soil, and that N addition can decrease PyOM C cycling while leaving unaltered wood C cycling.


2014 ◽  
Vol 7 (3) ◽  
pp. 867-881 ◽  
Author(s):  
H. Wu ◽  
C. Peng ◽  
T. R. Moore ◽  
D. Hua ◽  
C. Li ◽  
...  

Abstract. Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.


2019 ◽  
Vol 33 (22) ◽  
pp. 2898-2917 ◽  
Author(s):  
Jaromir Dusek ◽  
Michal Dohnal ◽  
Tomas Vogel ◽  
Anne Marx ◽  
Johannes A.C. Barth

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 435 ◽  
Author(s):  
Jiacong Zhou ◽  
Xiaofei Liu ◽  
Jinsheng Xie ◽  
Maokui Lyu ◽  
Yong Zheng ◽  
...  

Forest soil respiration plays an important role in global carbon (C) cycling. Owing to the high degree of C and nitrogen (N) cycle coupling, N deposition rates may greatly influence forest soil respiration, and possibly even global C cycling. Soil microbes play a crucial role in regulating the biosphere–atmosphere C exchange; however, how microbes respond to N addition remains uncertain. To better understand this process, the experiment was performed in the Castanopsis kawakamii Hayata Nature Reserve, in the subtropical zone of China. Treatments involved applying different levels of N (0, 40, and 80 kg ha−2 year−1) over a three-year period (January 2013–December 2015) to explore how soil physicochemical properties, respiration rate, phospholipid fatty acid (PLFA) concentration, and solid state 13C nuclear magnetic resonance responded to various N addition rate. Results showed that high levels of N addition significantly decreased soil respiration; however, low levels of N addition significantly increased soil respiration. High levels of N reduced soil pH and enhanced P and C co-limitation of microorganisms, leading to significant reductions in total PLFA and changes in the structure of microbial communities. Significant linear relationships were observed between annual cumulative respiration and the concentration of microbial biomass (total PLFA, gram-positive bacteria (G+), gram-negative bacteria (G−), total bacteria, and fungi) and the microbial community structure (G+: G− ratio). Taken together, increasing N deposition changed microbial community structure and suppressed microbial biomass, ultimately leading to recalcitrant C accumulation and soil C emissions decrease in subtropical forest.


Soil Science ◽  
1986 ◽  
Vol 142 (1) ◽  
pp. 27-35 ◽  
Author(s):  
STEPHEN C. NODVIN ◽  
CHARLES T. DRISCOLL ◽  
GENE E. LIKENS

2009 ◽  
Vol 55 (No. 5) ◽  
pp. 201-207 ◽  
Author(s):  
M. Remeš ◽  
J. Kulhavý

The study deals with the monitoring of dissolved organic carbon (DOC) concentrations in seepage water sampled from differently managed forest plots in the Drahanská vrchovina Upland. Simultaneously, the input of DOC in precipitation and throughfall is evaluated. Preliminary results show higher mobility level of carbon substances in forest soil in a pure spruce stand compared to mixed stand or a pure beech stand. DOC can be one of suitable characteristics to evaluate the conversion effectiveness of spruce monocultures.


2013 ◽  
Vol 6 (2) ◽  
pp. 3473-3508 ◽  
Author(s):  
H. Wu ◽  
C. Peng ◽  
T. R. Moore ◽  
D. Hua ◽  
C. Li ◽  
...  

Abstract. Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling that takes place in soil organic carbon (SOC) pools, it is missing from the global C budget. Fluxes in DOC are critical to aquatic ecosystem inputs and contribute to C balances of terrestrial ecosystems. Only a few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age-sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that change in land use is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document