scholarly journals Identifying vital effects in <i>Halimeda</i> algae with Ca isotopes

2014 ◽  
Vol 11 (24) ◽  
pp. 7207-7217 ◽  
Author(s):  
C. L. Blättler ◽  
S. M. Stanley ◽  
G. M. Henderson ◽  
H. C. Jenkyns

Abstract. Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater, resulting in experimental samples with somewhat malformed skeletons. The Ca-isotope fractionation of the algal calcite (−0.6‰) appears to be much smaller than that for the algal aragonite (−1.4‰), similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda has higher Ca-isotope ratios than inorganic forms by approximately 0.25‰, likely because of Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the marine Ca-isotope cycle.

2014 ◽  
Vol 11 (3) ◽  
pp. 3559-3580 ◽  
Author(s):  
C. L. Blättler ◽  
S. M. Stanley ◽  
G. M. Henderson ◽  
H. C. Jenkyns

Abstract. Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater. The Ca-isotope fractionation of the algal calcite is much smaller than that for the algal aragonite, similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda is isotopically heavier than inorganic forms, likely due to Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the Ca-isotope budget of the carbonate sink and the Ca-isotope composition of seawater.


2021 ◽  
Author(s):  
Michael Henehan ◽  
Christa Klein-Gebbinck ◽  
Gavin Foster ◽  
Jill Wyman ◽  
Mathis Hain ◽  
...  

&lt;p&gt;Boron isotope ratios, as measured in marine calcium carbonate, are a proven tracer of past seawater and calcifying fluid pH and thus a powerful tool for the reconstruction of past atmospheric CO&lt;sub&gt;2&lt;/sub&gt; and monitoring of coral physiology. For such applications, understanding the inorganic baseline upon which foraminiferal vital effects or coral pH upregulation are superimposed should be an important prerequisite. Yet, investigations into boron isotope fractionation in synthetic CaCO&lt;sub&gt;3&amp;#160;&lt;/sub&gt;polymorphs have often reported variable and even conflicting results, implying that we may not fully understand pathways of boron incorporation into calcium carbonate. &amp;#160;Here we address this topic with experimental data from calcite and aragonite precipitated across a range of pH in the presence of both Mg and Ca. We confirm the results of previous studies that the boron isotope composition of inorganic aragonite precipitates closely reflects that of aqueous borate ion, but that calcites display a higher degree of scatter, and diverge from the boron isotope composition of borate ion at low pH. We discuss these findings with reference to the simultaneous incorporation of other trace and minor elements, and highlight a number of mechanisms by which crystal growth mechanisms may influence the concentration and isotope composition of boron in CaCO&lt;sub&gt;3&lt;/sub&gt;. In particular, we highlight the potential importance of surface electrostatics in driving variability in published synthetic carbonate datasets. Importantly for palaeo-reconstruction, however, these electrostatic effects are likely to play a much more minor role during natural precipitation of biogenic carbonates.&lt;/p&gt;


2014 ◽  
Vol 14 (23) ◽  
pp. 31813-31841
Author(s):  
S. J. Allin ◽  
J. C. Laube ◽  
E. Witrant ◽  
J. Kaiser ◽  
E. McKenna ◽  
...  

Abstract. The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (&amp;varepsilon;app) for mid- and high-latitude stratospheric samples are (−2.4 ± 0.5) and (−2.3 ± 0.4)‰ for CFC-11, (−12.2 ± 1.6) and (−6.8 ± 0.8)‰ for CFC-12 and (−3.5 ± 1.5) and (−3.3 ± 1.2)‰ for CFC-113, respectively. Assuming a constant source isotope composition, we estimate the expected trends in the tropospheric isotope signature of these gases due to their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these model results to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). Model trends agree with tropospheric measurements within analytical uncertainties. From 1970 to the present-day, we find no evidence for variations in chlorine isotope ratios associated with changes in CFC manufacturing processes. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes, using a single-detector gas chromatography-mass spectrometry system.


2006 ◽  
Vol 361 (1474) ◽  
pp. 1715-1720 ◽  
Author(s):  
M Anand ◽  
S.S Russell ◽  
R.L Blackhurst ◽  
M.M Grady

Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.


2019 ◽  
Author(s):  
Caroline Thaler ◽  
Amandine Katz ◽  
Magali Bonifacie ◽  
Bénédicte Ménez ◽  
Magali Ader

Abstract. Paleoenvironmental reconstructions, which are mainly retrieved from oxygen isotope (δ18O) and clumped isotope (Δ47) compositions of carbonate minerals, are compromised when carbonate crystallization occurs in isotopic disequilibrium. To date, knowledge of these common isotopic disequilibria, known as vital effects in biogenic carbonates, remains limited and the potential information recorded by δ18O and Δ47 offsets from isotopic equilibrium values is largely overlooked. Additionally, in carbonates formed in isotopic equilibrium, the use of the carbonate δ18O signature as a paleothermometer relies on our knowledge of the paleowaters' δ18O value, which is often assumed. Here, we report the largest Δ47 offsets observed to date (as much as −0.270 ‰), measured on microbial carbonates, that are strongly linked to carbonate δ18O offsets (−25 ‰) from equilibrium. These offsets are likely both related to the microorganism metabolic activity and yield identical erroneous temperature reconstructions. Unexpectedly, we show that the δ18O value of the water in which carbonates precipitated, as well as the water-carbonate δ18O fractionation dependence to temperature at equilibrium can be retrieved from these paired δ18O and Δ47 disequilibrium values measured in carbonates. The possibility to retrieve the δ18O value of paleowaters, sediments' interstitial waters or organisms' body water at the carbonate precipitation loci, even from carbonates formed in isotopic disequilibrium, opens long-awaited research avenues for both paleoenvironmental reconstructions and biomineralization studies.


2020 ◽  
Vol 17 (7) ◽  
pp. 1731-1744 ◽  
Author(s):  
Caroline Thaler ◽  
Amandine Katz ◽  
Magali Bonifacie ◽  
Bénédicte Ménez ◽  
Magali Ader

Abstract. Paleoenvironmental reconstructions, which are mainly retrieved from oxygen isotope (δ18O) and clumped isotope (Δ47) compositions of carbonate minerals, are compromised when carbonate precipitation occurs in isotopic disequilibrium. To date, knowledge of these common isotopic disequilibria, known as vital effects in biogenic carbonates, remains limited, and the potential information recorded by δ18O and Δ47 offsets from isotopic equilibrium values is largely overlooked. Additionally, in carbonates formed in isotopic equilibrium, the use of the carbonate δ18O signature as a paleothermometer relies on our knowledge of the paleowaters' δ18O value, which is often assumed. Here, we report the largest Δ47 offsets observed to date (as much as −0.270 ‰), measured on microbial carbonates that are strongly linked to carbonate δ18O offsets (−25 ‰) from equilibrium. These offsets are likely both related to the microorganism metabolic activity and yield identical erroneous temperature reconstructions. Unexpectedly, we show that the δ18O value of the water in which carbonates precipitated, as well as the water–carbonate δ18O fractionation dependence on temperature at equilibrium, can be retrieved from these paired δ18O and Δ47 disequilibrium values measured in carbonates. The possibility to retrieve the δ18O value of paleowaters, sediments' interstitial waters or organisms' body water at the carbonate precipitation loci, even from carbonates formed in isotopic disequilibrium, opens long-awaited research avenues for both paleoenvironmental reconstructions and biomineralization studies.


2018 ◽  
Author(s):  
Robert Frei ◽  
Cora Paulukat ◽  
Sylvie Bruggmann ◽  
Robert M. Klaebe

Abstract. The chromium isotope system (53Cr / 52Cr expressed as δ53Cr relative to NIST SRM 979) in marine biogenic and non-biogenic carbonates is currently being evaluated as a proxy for the redox state of the ocean. Previous work has concentrated on using corals and foraminifera for this purpose, but investigations focusing on the behavior of Cr in bivalves as potential archives are lacking. Due to their often good preservation, fossil marine biogenic carbonates have the potential to serve as useful archives for the reconstruction of past ocean redox fluctuations and eventually link those to climatic changes throughout Earth’s history. Here, we present an evaluation of the Cr isotope system in shells of some modern bivalves. Shell species from Lucidinadae, Cardiidae, Glycimerididae, and Pectenidae, collected systematically from one Mediterranean location (Playa Poniente, Benidorm, Spain) over a three year period, reveal δ53Cr values ranging from 0.15 to 0.65 ‰, values that are systematically below the local seawater δ53Cr value of 0.83 &amp;pm; 0.05 ‰. This attests for significant reduction of dissolved seawater chromium in the process leading to calcification and thus for control of Cr isotope fractionation during biological routes. A similar, constant offset in δ53Cr values relative to surface seawater is observed in shells from Mytilius edulis from an arctic location (Godhavn, Disko Bay, Greenland). Chromium concentrations in the studied shells are significantly controlled by organic matter and typically range from 0.020 to 0.100 ppm, with some higher concentrations of up to 0.163 ppm recorded in Pectenidae. We also observe subtle, species-dependent differences in average Cr isotope signatures in the samples from Playa Poniente, particularly of Lucidinadae and Cardiidae, with considerably depressed and elevated δ53Cr values, respectively, relative to the other species investigated. Within-species heterogeneities, both in Cr concentrations and δ53Cr values, are favorably seen to result from vital effects during shell calcification rather than from heterogeneous seawater composition. This is because we observe that the surface seawater composition in the particular Playa Poniente location remained constant during July month of the three years we collected bivalve samples. Within single shell heterogeneities associated with growth zones reflecting one to several years of growth, both in δ53Cr and Cr concentrations, are observed in a sample of Placuna placenta and Mimachlamys townsendi. We suspect that these variations are, at least partially, related to seasonal changes in δ53Cr of surface seawaters. Recognizing the importance of organic substances in the bivalve shells, we propose a model whereby reduction of Cr(VI) originally contained in the seawater as chromate ion and transported to the calcifying space, to Cr(III), is effectively adsorbed onto organic macromolecules which eventually get included in the growing shell carbonates. This study, with its definition of statistically sound offsets in δ53Cr values of certain bivalve species from ambient seawater, forms a base for futures investigations aimed at using fossil shells as archives for the reconstruction of paleo-seawater redox fluctuations.


2018 ◽  
Vol 15 (16) ◽  
pp. 4905-4922 ◽  
Author(s):  
Robert Frei ◽  
Cora Paulukat ◽  
Sylvie Bruggmann ◽  
Robert M. Klaebe

Abstract. The chromium isotope system (53Cr ∕ 52Cr, expressed as δ53Cr relative to NIST SRM 979) in marine biogenic and non-biogenic carbonates is currently being evaluated as a proxy for the redox state of the ocean. Previous work has concentrated on using corals and foraminifera for this purpose, but investigations focusing on the behavior of Cr in bivalves as potential archives are lacking. Due to their often good preservation, fossil marine biogenic carbonates have the potential to serve as useful archives for the reconstruction of past ocean redox fluctuations and eventually link those to climatic changes throughout Earth's history. Here, we present an evaluation of the Cr isotope system in shells of some modern bivalves. Shell species from Lucidinadae, Cardiidae, Glycimerididae and Pectenidae, collected systematically from one Mediterranean location (Playa Poniente, Benidorm, Spain) over a 3-year period reveal δ53Cr values ranging from 0.15 ‰ to 0.65 ‰, values that are systematically below the local seawater δ53Cr value of 0.83±0.05 ‰. This attests to a significant reduction of dissolved seawater chromium in the process leading to calcification and thus for control of Cr isotope fractionation during biological routes. A similar, constant offset in δ53Cr values relative to surface seawater is observed in shells from Mytilius edulis from an arctic location (Godhavn, Disko Bay, Greenland). Chromium concentrations in the studied shells are significantly controlled by organic matter and typically range from 0.020 to 0.100 ppm, with some higher concentrations of up to 0.163 ppm recorded in Pectenidae. We also observe subtle, species-dependent differences in average Cr isotope signatures in the samples from Playa Poniente, particularly of Lucidinadae and Cardiidae, with considerably depressed and elevated δ53Cr values, respectively, relative to the other species investigated. Intra-species heterogeneities, both in Cr concentrations and δ53Cr values, are favorably seen to result from vital effects during shell calcification rather than from heterogeneous seawater composition. This is because we observe that the surface seawater composition in the particular Playa Poniente location remained constant during the month of July of the 3 years we collected bivalve samples. Intra-shell heterogeneities – associated with growth zones reflecting one to several years of growth, both in δ53Cr and Cr concentrations – are observed in a sample of Placuna placenta and Mimachlamys townsendi. We suspect that these variations are, at least partially, related to seasonal changes in δ53Cr of surface seawaters. Recognizing the importance of organic substances in the bivalve shells, we propose a model whereby reduction of Cr(VI) originally contained in the seawater as chromate ion and transported to the calcifying space, to Cr(III), is effectively adsorbed onto organic macromolecules which eventually get included in the growing shell carbonates. This study, with its definition of statistically sound offsets in δ53Cr values of certain bivalve species from ambient seawater, forms a base for future investigations aimed at using fossil shells as archives for the reconstruction of paleo-seawater redox fluctuations.


2008 ◽  
Vol 72 (1) ◽  
pp. 239-242 ◽  
Author(s):  
M. Cusack ◽  
A. Pérez-Huerta ◽  
P. Chung ◽  
D. Parkinson ◽  
Y. Dauphin ◽  
...  

With their long geological history and stable low-Mg calcite shells, Rhynchonelliform brachiopods are attractive sources of environmental data such as past seawater temperature (Buening and Spero, 1996; Auclair et al., 2003; Brand et al., 2003; Parkinson et al., 2005). Concerns about the influence of vital effects on the stable isotope composition of brachiopod shells (Popp et al., 1986), led to isotope analyses of different parts of brachiopod shells in order to identify those parts of the shell that are influenced by any vital effect and those parts that may be suitable recorders of seawater temperature via stable oxygen isotope composition (Carpenter and Lohmann, 1995; Parkinson et al., 2005). Such detailed studies demonstrated that the outer primary layer of acicularcalcite is isotopically light in both δ18O and δ13C while the secondary layer, composed of calcite fibres, is in oxygen-isotope equilibrium with ambient seawater(Fig. 1) (Parkinson et al., 2005).


2015 ◽  
Vol 15 (12) ◽  
pp. 6867-6877 ◽  
Author(s):  
S. J. Allin ◽  
J. C. Laube ◽  
E. Witrant ◽  
J. Kaiser ◽  
E. McKenna ◽  
...  

Abstract. The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (&amp;varepsilon;app) for mid- and high-latitude stratospheric samples are respectively −2.4 (0.5) and −2.3 (0.4) ‰ for CFC-11, −12.2 (1.6) and −6.8 (0.8) ‰ for CFC-12 and −3.5 (1.5) and −3.3 (1.2) ‰ for CFC-113, where the number in parentheses is the numerical value of the standard uncertainty expressed in per mil. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these projections to the long-term δ (37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (North Greenland Eemian Ice Drilling (NEEM) site) and Antarctica (Fletcher Promontory site). From 1970 to the present day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties, a constant average emission isotope delta (δ) is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope δ has been affected by changes in CFC manufacturing processes or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 mL), using a single-detector gas chromatography–mass spectrometry (GC–MS) system.


Sign in / Sign up

Export Citation Format

Share Document