single detector
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 58)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Coskun Bulut ◽  
Halil Ibrahim Dagdeviren ◽  
Ana-Maria Elena Andronache ◽  
Natasa Mekic ◽  
Richard R Pemper

Abstract This paper describes the petrophysical analysis resulting from operation of two independent pulsed neutron logging tools in the same cased hole well. The well was primarily carbonate and included many different subsurface formations located in the Southeast Anatolia Region of Turkey that included the Derdere, Karababa A, B, and C, Karaboğaz, Bozova, and Germav. Computing the mineralogy and saturation in these environments is challenging due to the complexity and low porosity of the formations that included mixed lithologies and organic shale. One of the objectives of this work was to demonstrate how the spectral data from the two tools was not only consistent, but that they could be combined to create an optimal petrophysical interpretation of the lithology, detailed mineralogy, porosity, and saturation of the formations within the well. Both tools employed a pulsed neutron generator capable of emitting 2 x 108 neutrons/second into the ambient formation. One was a 4-detector, 1-11/16-inch diameter reservoir evaluation tool, and the other was a single detector, 3-1/4-inch geochemical spectroscopy tool. In order to obtain the best possible results, a sound logging program was created that involved running the reservoir evaluation tool in 3 different modes of operation. This included the carbon/oxygen (C/O) mode, the sigma mode, and the gas mode. Stationary measurements were also obtained. The geochemical logging tool has only a single mode of operation. The resulting sigma measurements were in complete agreement. The sigma from the geochemical logging tool was corrected for the effects of diffusion. The advantage of the slim-hole reservoir evaluation tool is that the measurements from the 4th detector are diffusion-free. Data from the 1-11/16-inch reservoir evaluation tool from the gas mode did not reveal any bypassed gas zones in the well. Oil saturation was computed with the reservoir evaluation tool based upon three logging passes in the C/O mode. An important component of the interpretation was that it was supported by MCNP modeling that predicted the tool's response for hydrocarbon saturation. Although data from the geochemical spectroscopy tool was not used to determine saturation in this well, the resulting carbon concentration, that included kerogen as well as hydrocarbons, was completely consistent with the saturation computed from the reservoir evaluation tool.


2021 ◽  
Vol 16 (12) ◽  
pp. P12012
Author(s):  
H. Heo ◽  
J. Yang ◽  
J. Kang

Abstract A rotatable lutetium-yttrium-oxyorthosilicate-Geiger-mode-avalanche photodiode (LYSO-GAPD) DEXA detector that can be configured into either a normal-resolution or a high-resolution mode, was proposed and examined. A 3 × 3 × 2 mm3 LYSO was coupled to a 3 × 3 mm2 GAPD. The versatile transformation of the high-resolution mode was possible by employing the rotating controller for the DEXA detector on its own axis, and the intrinsic resolution in this mode was improved by ∼ 33% compared to the normal-resolution mode. Dual-energy X-ray spectra and imaging capabilities were evaluated in both acquisition modes. The respective peak positions of low- and high-energy-beam of normal-resolution mode (high-resolution mode) were 1330 mV (1262 mV) and 2347 mV (2267 mV). The respective peak-to-valley ratios of low- and high-energy-beam of normal-resolution mode (high-resolution mode) were ∼ 2.8 (∼ 2.9) and ∼ 1.2 (∼ 1.1). Considerable improvements in phantom images such as overall contrast and fine-spot detectability were observed in the high-resolution mode. It should be noted that spatial resolution was improved by reducing the detection-area from 3 × 3 mm2 to 2 × 3 mm2 in the high-resolution mode, but count rate was also decreased. These results demonstrated that a rotatable LYSO-GAPD DEXA detector allows to provide high versatility for both high-resolution mode and normal-resolution mode with a single detector.


2021 ◽  
pp. 2100212
Author(s):  
Zhongjin Lin ◽  
Huijie Wang ◽  
Simon Bélanger-de Villers ◽  
Qifeng Li ◽  
Wei Shi
Keyword(s):  

Nano Letters ◽  
2021 ◽  
Author(s):  
Lingdong Kong ◽  
Qingyuan Zhao ◽  
Hui Wang ◽  
Jiawei Guo ◽  
Haiyangbo Lu ◽  
...  

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
I. Allekotte ◽  
A. Almela ◽  
...  

AbstractWe present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alessandro Desy ◽  
Guillaume F. Bouvet ◽  
Étienne Croteau ◽  
Nancy Lafrenière ◽  
Éric E. Turcotte ◽  
...  

Abstract Background Accurate QSPECT is crucial in dosimetry-based, personalized radiopharmaceutical therapy with 177Lu and other radionuclides. We compared the quantitative performance of three NaI(Tl)-crystal SPECT/CT systems equipped with low-energy high-resolution collimators from two vendors (Siemens Symbia T6; GE Discovery 670 and NM/CT 870 DR). Methods Using up to 14 GBq of 99mTc in planar mode, we determined the calibration factor and dead-time constant under the assumption that these systems have a paralyzable behaviour. We monitored their response when one or both detectors were activated. QSPECT capability was validated by SPECT/CT imaging of a customized NEMA phantom containing up to 17 GBq of 99mTc. Acquisitions were reconstructed with a third-party ordered subset expectation maximization algorithm. Results The Siemens system had a higher calibration factor (100.0 cps/MBq) and a lower dead-time constant (0.49 μs) than those from GE (75.4–87.5 cps/MBq; 1.74 μs). Activities of up to 3.3 vs. 2.3–2.7 GBq, respectively, were quantifiable by QSPECT before the observed count rate plateaued or decreased. When used in single-detector mode, the QSPECT capability of the former system increased to 5.1 GBq, whereas that of the latter two systems remained independent of the detectors activation mode. Conclusion Despite similar hardware, SPECT/CT systems’ response can significantly differ at high count rate, which impacts their QSPECT capability in a post-therapeutic setting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Dorozynska ◽  
Simon Ek ◽  
Vassily Kornienko ◽  
David Andersson ◽  
Alexandra Andersson ◽  
...  

AbstractFluorescence-based multispectral imaging of rapidly moving or dynamic samples requires both fast two-dimensional data acquisition as well as sufficient spectral sensitivity for species separation. As the number of fluorophores in the experiment increases, meeting both these requirements becomes technically challenging. Although several solutions for fast imaging of multiple fluorophores exist, they all have one main restriction; they rely solely on spectrally resolving either the excitation- or the emission characteristics of the fluorophores. This inability directly limits how many fluorophores existing methods can simultaneously distinguish. Here we present a snapshot multispectral imaging approach that not only senses the excitation and emission characteristics of the probed fluorophores but also all cross term combinations of excitation and emission. To the best of the authors’ knowledge, this is the only snapshot multispectral imaging method that has this ability, allowing us to even sense and differentiate between light of equal wavelengths emitted from the same fluorescing species but where the signal components stem from different excitation sources. The current implementation of the technique allows us to simultaneously gather 24 different spectral images on a single detector, from which we demonstrate the ability to visualize and distinguish up to nine fluorophores within the visible wavelength range.


2021 ◽  
Vol 13 (20) ◽  
pp. 4103
Author(s):  
Andrea Serafini ◽  
Matteo Albéri ◽  
Michele Amoretti ◽  
Stefano Anconelli ◽  
Enrico Bucchi ◽  
...  

Proximal gamma-ray spectroscopy is a consolidated technology for a continuous and real‑time tracing of soil water content at field scale. New developments have shown that this method can also act as an unbiased tool for remotely distinguishing rainwater from irrigation without any meteorological support information. Given a single detector, the simultaneous observation in a gamma spectrum of a transient increase in the 214Pb signal, coupled with a decrease in the 40K signal, acts as an effective proxy for rainfall. A decrease in both 214Pb and 40K signals is, instead, a reliable fingerprint for irrigation. We successfully proved this rationale in two data-taking campaigns performed on an agricultural test field with different crop types (tomato and maize). The soil moisture levels were assessed via the 40K gamma signal on the basis of a one-time setup calibration. The validation against a set of gravimetric measurements showed excellent results on both bare and vegetated soil conditions. Simultaneously, the observed rain-induced increase in the 214Pb signal permitted to identify accurately the rain and irrigation events occurred in the 8852 h of data taking.


2021 ◽  
Author(s):  
Anton Lukashchuk ◽  
Johann Riemensberger ◽  
Maxim Karpov ◽  
Junqiu Liu ◽  
Tobias J. Kippenberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document