scholarly journals Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

2015 ◽  
Vol 12 (21) ◽  
pp. 6279-6290 ◽  
Author(s):  
Y. Zhao ◽  
Y. Z. Wang ◽  
Z. H. Xu ◽  
L. Fu

Abstract. Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. Prescribed burning can affect both carbon (C) and nitrogen (N) cycling in the forest and thereby influence the soil-atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). To quantify the impact of a prescribed burning (conducted on 27 May 2014) on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013) and after (August 2014 and November 2014) the fire. Gas exchange rates were determined in four replicate plots which were burned during the combustion and in another four adjacent unburned plots located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m−2 d−1. Prescribed burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates in the burned plots measured in August 2014. In the following 3 months, the CH4 uptake rate was recovered to the pre-burning level. Mean CO2 emission from the forest soils ranged from 2721.76 to 7113.49 mg m−2 d−1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned plots in both August and November 2014. The CO2 emissions showed more seasonal variations, rather than the effects of prescribed burning. The N2O emission in the plots was quite low, and no significant impact of prescribed burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial activities, following the prescribed burning, were the factors that controlled the greenhouse gas exchanges. Our results suggested that the low-intensity prescribed burning would decrease soil CO2 emission and increase CH4 uptake, but this effect would be present within a relatively short period. Only slight changes in the surface soil properties during the combustion and very limited impacts of prescribed burning on the mineral soils supported the rapid recovery of the greenhouse gas exchange rates.

2015 ◽  
Vol 12 (13) ◽  
pp. 10679-10706
Author(s):  
Y. Zhao ◽  
Y. Z. Wang ◽  
Z. H. Xu ◽  
L. Fu

Abstract. Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. It can affect both carbon (C) and nitrogen (N) cycling in the forest and thereby influence the soil–atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). To quantify the impact of a prescribed burning (conducted on 27 May 2014) on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013) and after (August 2014 and November 2014) the fire. Gas exchange rates were determined at 4 replicate sites which were burned during the combustion and another 4 adjacent unburned sites located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m−2 day−1. The burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates at the burned sites measured in August 2014. While within the next 3 months the CH4 uptake rate was recovered to pre-burning levels. Mean CO2 emission from forest soils ranged from 2721.76 to 7113.49 mg m−2 day−1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned sites in both August and November 2014. The temporal dynamics of the CO2 emission presented more seasonal variations, rather than burning effects. The N2O emission at the studied sites was quite low, and no significant impact of burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial activities, resulting from the burning, were the factors that controlled the greenhouse gas exchanges. Our results suggested that the low intensity prescribed burning would decrease soil CO2 emission and increase CH4 uptake, however, this effect would be present within a relative short period. Only slight changes in the surface soil during the combustion and very limited damages in the mineral soils supported the quick recovery of the greenhouse gas exchange rates.


2020 ◽  
Author(s):  
SAGAR TANEJA ◽  
Raj Setia ◽  
Baban K Bansod ◽  
Rahul Nigam ◽  
Sharad K Gupta ◽  
...  

2019 ◽  
Author(s):  
Xia Zhao ◽  
Yuanhe Yang ◽  
Haihua Shen ◽  
Xiaoqing Geng ◽  
Jingyun Fang

Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. However, the quantitative linkages between soil properties, climate, and biota at the global scale remain unclear. By compiling a comprehensive global soil database, we mapped eight major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon [SOC] density; soil total nitrogen [STN] density; and soil C : N mass ratios) in the surface (0–30 cm) soil layer based on machine learning algorithms, and demonstrated the quantitative linkages between surface soil properties, climate, and biota at the global scale (i.e., global soil-climate-biome diagram). On the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; Soil pH decreased with higher MAP and lower MAT, and the critical MAP for the transition from alkaline to acidic soil decreased with decreasing MAT; SOC density and STN density both were jointly affected by MAT and MAP, showing an increase at lower MAT and a saturation tendency towards higher MAP. Surface soil physical and chemical properties also showed remarkable variations across biomes. The soil-climate-biome diagram suggests the co-evolution of the soil, climate, and biota under global environmental change.


2000 ◽  
Vol 64 (3) ◽  
pp. 974-982 ◽  
Author(s):  
John J. Brejda ◽  
Thomas B. Moorman ◽  
Jeffrey L. Smith ◽  
Douglas L. Karlen ◽  
Deborah L. Allan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document