scholarly journals Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of <i>Porites panamensis</i> in the southern Gulf of California

2016 ◽  
Vol 13 (9) ◽  
pp. 2675-2687 ◽  
Author(s):  
Rafael A. Cabral-Tena ◽  
Alberto Sánchez ◽  
Héctor Reyes-Bonilla ◽  
Angel H. Ruvalcaba-Díaz ◽  
Eduardo F. Balart

Abstract. Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of  ≈  1.0 to  ≈  2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (−0.45, −0.32), and gentle slopes (0.09, 0.10 ‰ °C−1) of the δ18O–SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signals differently in each sex. Although these findings relate to one gonochoric brooding species, they may have some implications for the more commonly used gonochoric spawning species such as Porites lutea and Porites lobata.

2015 ◽  
Vol 12 (22) ◽  
pp. 18795-18827 ◽  
Author(s):  
R. A. Cabral-Tena ◽  
A. Sánchez ◽  
H. Reyes-Bonilla ◽  
A. H. Ruvalcaba-Díaz ◽  
E. F. Balart

Abstract. Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of &amp;approx; 1.0 °C to &amp;approx; 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (−0.45, −0.32), and gentle slopes (0.09 ‰ °C−1, 0.10 ‰ °C−1) of the δ18O–SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signal differently in each sex.


The Holocene ◽  
2021 ◽  
pp. 095968362098805
Author(s):  
Asmae Baqloul ◽  
Enno Schefuß ◽  
Martin Kölling ◽  
Lydie Dupont ◽  
Jeroen Groeneveld ◽  
...  

The southwest of Morocco is considered to be an area of refuge within the Mediterranean region, hosting the endemic tropical Argan tree. This region is presently subject to severe droughts, desertification and land degradation, and likely facing increased climate variability and socio-economic stress in the future. Here, we use the stable hydrogen and carbon isotope composition (δD and δ13C) of plant-waxes in a high-resolution marine sediment core (GeoB8601-3) collected off Cape Ghir in southwestern Morocco, in combination with published data on pollen and XRF element ratios from the same archive. We aim to reconstruct the hydroclimate and vegetation history during the last 3000 years. Stable carbon isotope compositions of leaf waxes (δ13Cwax) show that natural vegetation in southwestern Morocco consists of C3 plants. Minor variations in δ13Cwax were positively correlated to changes in stable hydrogen isotope compositions of leaf waxes (δDwax) before 700 CE. Changes in rainfall amounts and water use efficiency indicate a clear vegetation response to precipitation changes and thus to climate forcing. After 700 CE, δDwax and δ13Cwax became de-coupled suggesting that the plant wax discharge and their isotope signals were no longer solely controlled by climate; the waxes likely mainly originate from the lowlands and carry an enriched (dry) δD signal but a depleted 13C signature. The depletion of δ13Cwax correlates with the increase of Argan pollen concentration in the record. The period between ~700 and 900 CE coincides with the Arabization of Morocco which had an impact on the demographic composition of the country leading to new agricultural habits and, as a result, on the land-use triggering a higher erosion of lowland material by the Souss River.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Raymundo Avendaño-Ibarra ◽  
Enrique Godínez-Domínguez ◽  
Gerardo Aceves-Medina ◽  
Eduardo González-Rodríguez ◽  
Armando Trasviña

We analyzed the response of fish larvae assemblages to environmental variables and to physical macro- and mesoscale processes in the Gulf of California, during four oceanographic cruises (winter and summer 2005 and 2007). Physical data of the water column obtained through CTD casts, sea surface temperature, and chlorophyllasatellite imagery were used to detect mesoscale structures. Zooplankton samples were collected with standard Bongo net tows. Fish larvae assemblages responded to latitudinal and coastal-ocean gradients, related to inflow of water to the gulf, and to biological production. The 19°C and 21°C isotherms during winter, and 29°C and 31°C during summer, limited the distribution of fish larvae at the macroscale. Between types of eddy, the cyclonic (January) registered high abundance, species richness, and zooplankton volume compared to the other anticyclonic (March) and cyclonic (September). Thermal fronts (Big Islands) of January and July affected the species distribution establishing strong differences between sides. At the mesoscale, eddy and fronts coincided with the isotherms mentioned previously, playing an important role in emphasizing the differences among species assemblages. The multivariate analysis indicated that larvae abundance was highly correlated with temperature and salinity and with chlorophyllaand zooplankton volume during winter and summer, respectively.


2019 ◽  
Vol 498 (1) ◽  
pp. 101-127 ◽  
Author(s):  
Yuri D. Zakharov ◽  
Vladimir B. Seltser ◽  
Mikheil V. Kakabadze ◽  
Olga P. Smyshlyaeva ◽  
Peter P. Safronov

AbstractOxygen and carbon isotope data from well-preserved mollusc shells and belemnite rostra are presented from the Jurassic (Bathonian, Callovian and Tithonian) and Cretaceous (Aptian, Turonian, Campanian and Maastrichtian) of the Saratov–Samara Volga region, Russia. New data provide information on the resulting trends in palaeoclimate and in palaeoceanography and palaeoecology in the late Mesozoic. Palaeotemperatures calculated from Jurassic–Cretaceous benthic (bivalves and gastropods) and semi-pelagic (ammonites) molluscs are markedly higher than those calculated from pelagic belemnites using oxygen isotopes. This is probably due to various mollusc groups of the Saratov–Samara area inhabiting different depths in the marine basins (e.g. epipelagic v. mesopelagic). Our isotope records, combined with a review of previously published data from shallow-water fossils from the Saratov–Samara area and adjacent regions permits us to infer temperature trends for the epipelagic zone from the Middle Jurassic to Cretaceous in the Russian Platform–Caucasus area. The Jurassic–Cretaceous belemnites from the Russian Platform and the Caucasus have a lower δ13C signature than the contemporaneous brachiopods, bivalves and ammonites.


Author(s):  
L. Angiolini ◽  
D. P. F. Darbyshire ◽  
M. H. Stephenson ◽  
M. J. Leng ◽  
T. S. Brewer ◽  
...  

ABSTRACTThe Lower Permian of the Haushi basin, Interior Oman (Al Khlata Formation to Saiwan Formation/lower Gharif member) records climate change from glaciation, through marine sedimentation in the Haushi sea, to subtropical desert. To investigate the palaeoclimatic evolution of the Haushi Sea we used O, C, and Sr isotopes from 31 brachiopod shells of eight species collected bed by bed within the type-section of the Saiwan Formation. We assessed diagenesis by scanning electron microscopy of ultrastructure, cathodoluminescence, and geochemistry, and rejected fifteen shells not meeting specific preservation criteria. Spiriferids and spiriferinids show better preservation of the fibrous secondary layer than do orthotetids and productids and are therefore more suitable for isotopic analysis. δ18O of −3·7 to −3·1℅ from brachiopods at the base of the Saiwan Formation are probably related to glacial meltwater. Above this, an increase in δ18O may indicate ice accumulation elsewhere in Gondwana or more probably that the Haushi sea was an evaporating embayment of the Neotethys Ocean. δ13C varies little and is within the range of published data: its trend towards heavier values is consistent with increasing aridity and oligotrophy. Saiwan Sr isotope signatures are less radiogenic than those of the Sakmarian LOWESS seawater curve, which is based on extrapolation between few data points. In the scenario of evaporation in a restricted Haushi basin, the variation in Sr isotope composition may reflect a fluvial component.


Mineralogia ◽  
2011 ◽  
Vol 42 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Andrzej Trembaczowski

Use of sulphur and carbon stable-isotope composition of fish scales and muscles to identify the origin of fishδ34S and δ13C analyses were used to determine the origin of trout specimens. The isotope record of their scales and muscles are compared with a database previously obtained from wild- and reared fish coming from Polish rivers and pond farms. The comparison made it possible to find out whether the trout were wild or reared.


Author(s):  
Rizwan A. Khan ◽  
Suhail Ahmad

The design of welded structures for the fatigue limit state is normally carried out by means of either linear or bilinear S-N curves, which have been found adequate to predict crack initiation only. To properly assess the effects of the design, fabrication, inspection, and repair strategy for structure degradation due to crack growth, fracture mechanics (FM) models need to be applied. In this paper, alternative S-N and FM formulations of fatigue are investigated. The probabilistic fracture mechanics approach predicts the fatigue life of welded steel structures in the presence of cracks under random spectrum loading. It is based on a recently proposed bi-linear relationship to model fatigue crack growth. Uncertainty modeling, especially on fatigue crack growth parameters, is undertaken with the aid of recently published data in support of the bilinear crack growth relationship. Results pertaining to the fatigue reliability and fatigue crack size evolution are presented using the Monte Carlo simulation technique and the emphasis is placed on a comparison between the linear and bilinear crack growth models. Variations in the system configuration, service life, and coefficients of crack growth laws have been studied on the parametric basis


2017 ◽  
Author(s):  
Celeste Sánchez-Noguera ◽  
Ines Stuhldreier ◽  
Jorge Cortés ◽  
Carlos Jiménez ◽  
Álvaro Morales ◽  
...  

Abstract. Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May–June 2013), with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2). These results were compared with published data from the upwelling season 2009. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive inter- and intra-seasonal changes. Lowest pH (7.8) and highest pCO2 (658.3 µatm) values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH = 7.8, pCO2 = 643.5 µatm), unveiling that natural acidification occurs sporadically also in non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification, and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During non-upwelling season, the aragonite saturation state (Ωa) rises to values of > 3.3 and enhances calcification. Aragonite saturation state values during upwelling season falls below 2.5, hampering calcification and coral growth. Low reef accretion in Bahía Culebra indicates high erosion rates and that these reefs grow on the verge of their ecological tolerance. The Ωa threshold values for coral growth, derived from the correlation between Ωa and coral linear extension rates, suggest that future ocean acidification will threaten reefs in Bahía Culebra. These data contribute to build a better understanding of the carbonate system dynamics and coral reefs key response (e.g. coral growth) to natural low-pH conditions, in upwelling areas in the Eastern Tropical Pacific and beyond.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255398
Author(s):  
Maciej Sykut ◽  
Sławomira Pawełczyk ◽  
Tomasz Borowik ◽  
Boštjan Pokorny ◽  
Katarina Flajšman ◽  
...  

Stable isotope analyses of bone collagen are often used in palaeoecological studies to reveal environmental conditions in the habitats of different herbivore species. However, such studies require valuable reference data, obtained from analyses of modern individuals, in habitats of well-known conditions. In this article, we present the stable carbon and nitrogen isotope composition of bone collagen from modern red deer (N = 242 individuals) dwelling in various habitats (N = 15 study sites) in Europe. We investigated which of the selected climatic and environmental factors affected the δ13C and δ15N values in bone collagen of the studied specimens. Among all analyzed factors, the percent of forest cover influenced the carbon isotopic composition most significantly, and decreasing forest cover caused an increase in δ13C values. The δ15N was positively related to the proportion of open area and (only in the coastal areas) negatively related to the distance to the seashore. Using rigorous statistical methods and a large number of samples, we confirmed that δ13C and δ15N values can be used as a proxy of past habitats of red deer.


Sign in / Sign up

Export Citation Format

Share Document