scholarly journals The climatic imprint of bimodal distributions in vegetation cover for western Africa

2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.

2015 ◽  
Vol 12 (21) ◽  
pp. 18213-18251
Author(s):  
Z. Yin ◽  
S. C. Dekker ◽  
B. J. J. M. van den Hurk ◽  
H. A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in West Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. Understanding the explicit climate conditions where the woody cover bimodality can exist is important to predict crucial transitions of ecosystems due to climate change. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above ground biomass. Through conditional histogram analysis, we find that the bimodality of woody cover can only exist under low mean annual shortwave radiation and low above ground biomass. Based on a land cover map, in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water-radiation coupling are analyzed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not a sufficient predictor of a potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators can only demonstrate the potential occurrence of bimodality but cannot exclude the probability of bimodal vegetation distributions. A new indicator: the normalized difference of precipitation, successfully expresses the stability of the precipitation regime and can improve the accuracy of predictions of forest states. We evaluate the land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are displayed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility to significantly decrease. An increase in the area covered by savanna and grass is possible, which coincides with an observed re-greening of the Sahara.


2021 ◽  
Author(s):  
Sara Simona Cipolla ◽  
Nicola Montaldo

<p><span>In water-limited ecosystems such as those encountered on Mediterranean mountainous areas of shallow soil, climate-induced changes in precipitation regime are expected to influence the ability of remnants of native forests to resist or adapt to predicted reduced precipitation scenarios. The objective of this work was to understand the role of precipitation and physiographic ecosystem properties in woody cover spatial variability of Mediterranean sclerophyllous forests located within main protected areas of the Sardinia Island (Italy), an excellent reference condition for Mediterranean hydrologic studies due to the relatively low urbanization and human activities. Analyzed forests differ in altitude (0-1500 slm.), mean annual precipitation (450-1200 mm) over 95 years of daily data, exposition, dominant species, density, and soil thickness.</span> <span>Forests have been broken down into 30 * 30 m plots based on their type. Using data from the Landsat satellite sensors, temporal trends in the NDVI (Normalized Difference Vegetation Index) were quantified. We related these trends with different environmental variables to understand the effects of the variation of precipitation regimes and forest type on woody cover density. A significant direct effect of drought has been observed in the dry 2017 in all forests resulting in a significantly reduced NDVI values especially on south facing slopes plots and low soil thickness plots. On the contrary forest canopy were more stable on mesic habitats demonstrating that the availability of soil humidity is more important than solar radiation. Finally, the lowest values of NDVI were observed in semi-arid sclerophyllous forest dominated by species tolerant to drought and very thin stony soil layers. The identification of the factors that contribute the most to the increase in the vulnerability and the decrease of tree cover density of forests will allow to optimize planning and management strategies also under further drier climate changes prospective.</span></p>


2018 ◽  
Vol 15 (14) ◽  
pp. 4627-4645 ◽  
Author(s):  
Nemesio J. Rodríguez-Fernández ◽  
Arnaud Mialon ◽  
Stephane Mermoz ◽  
Alexandre Bouvet ◽  
Philippe Richaume ◽  
...  

Abstract. The vegetation optical depth (VOD) measured at microwave frequencies is related to the vegetation water content and provides information complementary to visible/infrared vegetation indices. This study is devoted to the characterization of a new VOD data set obtained from SMOS (Soil Moisture and Ocean Salinity) satellite observations at L-band (1.4 GHz). Three different SMOS L-band VOD (L-VOD) data sets (SMOS level 2, level 3 and SMOS-IC) were compared with data sets on tree height, visible/infrared indexes (NDVI, EVI), mean annual precipitation and above-ground biomass (AGB) for the African continent. For all relationships, SMOS-IC showed the lowest dispersion and highest correlation. Overall, we found a strong (R > 0.85) correlation with no clear sign of saturation between L-VOD and four AGB data sets. The relationships between L-VOD and the AGB data sets were linear per land cover class but with a changing slope depending on the class type, which makes it a global non-linear relationship. In contrast, the relationship linking L-VOD to tree height (R = 0.87) was close to linear. For vegetation classes other than evergreen broadleaf forest, the annual mean of L-VOD spans a range from 0 to 0.7 and it is linearly correlated with the average annual precipitation. SMOS L-VOD showed higher sensitivity to AGB compared to NDVI and K/X/C-VOD (VOD measured at 19, 10.7 and 6.9 GHz). The results showed that, although the spatial resolution of L-VOD is coarse ( ∼ 40 km), the high temporal frequency and sensitivity to AGB makes SMOS L-VOD a very promising indicator for large-scale monitoring of the vegetation status, in particular biomass.


2013 ◽  
Vol 368 (1625) ◽  
pp. 20120295 ◽  
Author(s):  
Simon L. Lewis ◽  
Bonaventure Sonké ◽  
Terry Sunderland ◽  
Serge K. Begne ◽  
Gabriela Lopez-Gonzalez ◽  
...  

We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha −1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha −1 ) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha −1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.


2014 ◽  
Vol 5 (1) ◽  
pp. 83-120 ◽  
Author(s):  
Z. Yin ◽  
S. C. Dekker ◽  
B. J. J. M. van den Hurk ◽  
H. A. Dijkstra

Abstract. Multiple states of woody cover under similar climate conditions are found in both conceptual models and observations. Due to the limitation of the observed woody cover data set, it is unclear whether the observed bimodality is caused by the presence of multiple stable states or is due to dynamic growth processes of vegetation. In this study, we combine a woody cover data set with an above ground biomass data set to investigate the simultaneous occurrences of savanna and forest states under different precipitation forcing. To interpret the results we use a recently developed vegetation dynamics model (the Balanced Optimality Structure Vegetation Model), in which the effect of fires is included. Our results show that bimodality also exists in above ground biomass and retrieved vegetation structure. In addition, the observed savanna distribution can be understood as derived from a stable state and a slightly drifting (transient) state, the latter having the potential to shift to the forest state. Finally, the results indicate that vegetation structure (horizontal vs. vertical leaf extent) is a crucial component for the existence of bimodality.


2020 ◽  
Author(s):  
Iuliia Shevtsova ◽  
Ulrike Herzschuh ◽  
Birgit Heim ◽  
Luise Schulte ◽  
Simone Stünzi ◽  
...  

Abstract. Upscaling plant biomass distribution and dynamics is essential for estimating carbon stocks and carbon balance. In this respect, the Russian Far East is among the least investigated subarctic regions despite its known vegetation sensitivity to ongoing warming. We representatively harvested above-ground biomass (AGB, separated by dominant taxa) at 40 sampling plots in central Chukotka. We used ordination to relate field-based taxa projective cover and Landsat-derived vegetation indices. A general additive model was used to link the ordination scores to AGB. We then mapped AGB for paired Landsat-derived time-slices (i.e. 2000/2001/2002 and 2016/2017), in four study regions covering a wide vegetation gradient from closed-canopy larch forests to barren alpine tundra. We provide AGB estimates and changes in AGB that were previously lacking for central Chukotka at a high spatial resolution and a detailed description of taxonomical contributions. Generally, AGB in the study region ranges from 0 to 16 kg m−2, with Cajander larch providing the highest contribution. Comparison of changes in AGB within the investigated period shows that the greatest changes (up to 1.25 kg m−2 yr−1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. As well as the notable changes, increases in AGB also occur within the land cover classes. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB.


2016 ◽  
Vol 7 (12) ◽  
pp. 1141-1149 ◽  
Author(s):  
Xiuliang Yuan ◽  
Longhui Li ◽  
Xin Tian ◽  
Geping Luo ◽  
Xi Chen

2021 ◽  
Vol 18 (11) ◽  
pp. 3343-3366
Author(s):  
Iuliia Shevtsova ◽  
Ulrike Herzschuh ◽  
Birgit Heim ◽  
Luise Schulte ◽  
Simone Stünzi ◽  
...  

Abstract. Upscaling plant biomass distribution and dynamics is essential for estimating carbon stocks and carbon balance. In this respect, the Russian Far East is among the least investigated sub-Arctic regions despite its known vegetation sensitivity to ongoing warming. We representatively harvested above-ground biomass (AGB; separated by dominant taxa) at 40 sampling plots in central Chukotka. We used ordination to relate field-based taxa projective cover and Landsat-derived vegetation indices. A general additive model was used to link the ordination scores to AGB. We then mapped AGB for paired Landsat-derived time slices (i.e. 2000/2001/2002 and 2016/2017), in four study regions covering a wide vegetation gradient from closed-canopy larch forests to barren alpine tundra. We provide AGB estimates and changes in AGB that were previously lacking for central Chukotka at a high spatial resolution and a detailed description of taxonomical contributions. Generally, AGB in the study region ranges from 0 to 16 kg m−2, with Cajander larch providing the highest contribution. Comparison of changes in AGB within the investigated period shows that the greatest changes (up to 1.25 kg m−2 yr−1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. As well as the notable changes, increases in AGB also occur within the land-cover classes. Our estimations indicate a general increase in total AGB throughout the investigated tundra–taiga and northern taiga, whereas the tundra showed no evidence of change in AGB.


Sign in / Sign up

Export Citation Format

Share Document