scholarly journals Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data

2021 ◽  
Vol 18 (11) ◽  
pp. 3343-3366
Author(s):  
Iuliia Shevtsova ◽  
Ulrike Herzschuh ◽  
Birgit Heim ◽  
Luise Schulte ◽  
Simone Stünzi ◽  
...  

Abstract. Upscaling plant biomass distribution and dynamics is essential for estimating carbon stocks and carbon balance. In this respect, the Russian Far East is among the least investigated sub-Arctic regions despite its known vegetation sensitivity to ongoing warming. We representatively harvested above-ground biomass (AGB; separated by dominant taxa) at 40 sampling plots in central Chukotka. We used ordination to relate field-based taxa projective cover and Landsat-derived vegetation indices. A general additive model was used to link the ordination scores to AGB. We then mapped AGB for paired Landsat-derived time slices (i.e. 2000/2001/2002 and 2016/2017), in four study regions covering a wide vegetation gradient from closed-canopy larch forests to barren alpine tundra. We provide AGB estimates and changes in AGB that were previously lacking for central Chukotka at a high spatial resolution and a detailed description of taxonomical contributions. Generally, AGB in the study region ranges from 0 to 16 kg m−2, with Cajander larch providing the highest contribution. Comparison of changes in AGB within the investigated period shows that the greatest changes (up to 1.25 kg m−2 yr−1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. As well as the notable changes, increases in AGB also occur within the land-cover classes. Our estimations indicate a general increase in total AGB throughout the investigated tundra–taiga and northern taiga, whereas the tundra showed no evidence of change in AGB.

2020 ◽  
Author(s):  
Iuliia Shevtsova ◽  
Ulrike Herzschuh ◽  
Birgit Heim ◽  
Luise Schulte ◽  
Simone Stünzi ◽  
...  

Abstract. Upscaling plant biomass distribution and dynamics is essential for estimating carbon stocks and carbon balance. In this respect, the Russian Far East is among the least investigated subarctic regions despite its known vegetation sensitivity to ongoing warming. We representatively harvested above-ground biomass (AGB, separated by dominant taxa) at 40 sampling plots in central Chukotka. We used ordination to relate field-based taxa projective cover and Landsat-derived vegetation indices. A general additive model was used to link the ordination scores to AGB. We then mapped AGB for paired Landsat-derived time-slices (i.e. 2000/2001/2002 and 2016/2017), in four study regions covering a wide vegetation gradient from closed-canopy larch forests to barren alpine tundra. We provide AGB estimates and changes in AGB that were previously lacking for central Chukotka at a high spatial resolution and a detailed description of taxonomical contributions. Generally, AGB in the study region ranges from 0 to 16 kg m−2, with Cajander larch providing the highest contribution. Comparison of changes in AGB within the investigated period shows that the greatest changes (up to 1.25 kg m−2 yr−1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. As well as the notable changes, increases in AGB also occur within the land cover classes. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2001 ◽  
Vol 31 (11) ◽  
pp. 1940-1946 ◽  
Author(s):  
Mark D Norris ◽  
John M Blair ◽  
Loretta C Johnson ◽  
Robert B McKane

An increase in woody plant abundance in regions historically dominated by grasses is a recent land cover change in grasslands worldwide. In tallgrass prairies of North America, this increase in woody plant cover includes the development of dense stands of eastern redcedar (Juniperus virginiana L.). To evaluate the consequences of this ongoing land cover change for ecosystem functioning, we developed allometric equations, using data from Kansas and Oklahoma, to estimate aboveground biomass and productivity in closed-canopy redcedar stands. We then applied these equations to three closed-canopy redcedar stands, 35–80 years old, which developed on sites formerly dominated by tallgrass prairie in eastern Kansas. Aboveground plant biomass for these redcedar-dominated sites ranged from 114 100 kg/ha for the youngest stand to 210 700 kg/ha for the oldest. Annual aboveground net primary productivity (ANPP) ranged from 7250 to 10 440 kg·ha–1·year–1 for the oldest and younger redcedar stands, respectively. Estimates of ANPP in comparable tallgrass prairie sites in this region average 3690 kg·ha–1·year–1 indicating a large increase in C uptake and aboveground storage as a result of the change from prairie to redcedar forests. Therefore, the widespread occurrence of redcedars across the woodland–prairie ecotone suggests that this land-cover change may have important consequences for regional net C storage.


2019 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Ronny Richter ◽  
Arend Heim ◽  
Wieland Heim ◽  
Johannes Kamp ◽  
Michael Vohland

Information on habitat preferences is critical for the successful conservation of endangered species. For many species, especially those living in remote areas, we currently lack this information. Time and financial resources to analyze habitat use are limited. We aimed to develop a method to describe habitat preferences based on a combination of bird surveys with remotely sensed fine-scale land cover maps. We created a blended multiband remote sensing product from SPOT 6 and Landsat 8 data with a high spatial resolution. We surveyed populations of three bird species (Yellow-breasted Bunting Emberiza aureola, Ochre-rumped Bunting Emberiza yessoensis, and Black-faced Bunting Emberiza spodocephala) at a study site in the Russian Far East using hierarchical distance sampling, a survey method that allows to correct for varying detection probability. Combining the bird survey data and land cover variables from the remote sensing product allowed us to model population density as a function of environmental variables. We found that even small-scale land cover characteristics were predictable using remote sensing data with sufficient accuracy. The overall classification accuracy with pansharpened SPOT 6 data alone amounted to 71.3%. Higher accuracies were reached via the additional integration of SWIR bands (overall accuracy = 73.21%), especially for complex small-scale land cover types such as shrubby areas. This helped to reach a high accuracy in the habitat models. Abundances of the three studied bird species were closely linked to the proportion of wetland, willow shrubs, and habitat heterogeneity. Habitat requirements and population sizes of species of interest are valuable information for stakeholders and decision-makers to maximize the potential success of habitat management measures.


2011 ◽  
Vol 6 (5) ◽  
pp. 870-877 ◽  
Author(s):  
Agnieszka Bogdanowicz ◽  
Paweł Olejniczak ◽  
Marlena Lembicz ◽  
Waldemar Żukowski

AbstractWe tested a hypothesis based on life history theory that examines reproductive costs incurred by individuals in consecutive years of their life. A multi-year dataset of resource allocation to vegetative and reproductive structures was analysed in Carex secalina — a perennial, monoecious sedge, reproducing only sexually. In a four-year garden experiment, we assessed above-ground biomass at the end of each season and reproductive allocation expressed as the total length of male and female spikes. The study was aimed at determining how size and age of a plant relates to its reproduction, and how the rate of reproduction affects the year-toyear biomass change in Carex secalina. We observed that after each reproductive episode, individuals had significantly smaller sizes and produced a lower number of generative tillers. The total production of reproductive structures decreased significantly with age in all populations. Moreover, the decrease in plant biomass was greater when more reproductive structures were produced in a previous year, which indicates that the plants incur costs of reproduction in terms of above-ground biomass production.


2013 ◽  
Vol 368 (1625) ◽  
pp. 20120295 ◽  
Author(s):  
Simon L. Lewis ◽  
Bonaventure Sonké ◽  
Terry Sunderland ◽  
Serge K. Begne ◽  
Gabriela Lopez-Gonzalez ◽  
...  

We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha −1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha −1 ) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha −1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.


Sign in / Sign up

Export Citation Format

Share Document