scholarly journals Biogeochemical cycling at the aquatic–terrestrial interface is linked to parafluvial hyporheic zone inundation history

2017 ◽  
Vol 14 (18) ◽  
pp. 4229-4241 ◽  
Author(s):  
Amy E. Goldman ◽  
Emily B. Graham ◽  
Alex R. Crump ◽  
David W. Kennedy ◽  
Elvira B. Romero ◽  
...  

Abstract. The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet–dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose,  % C,  % N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.

2017 ◽  
Author(s):  
Amy E. Goldman ◽  
Emily B. Graham ◽  
Alex R. Crump ◽  
David W. Kennedy ◽  
Elvira B. Romero ◽  
...  

Abstract. The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet/dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding carbon cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated reinundation. Surface sediment for assays and forced inundation laboratory incubations (destructively sampled at 0.5 hours and 25 hours) was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sampling elevations were inundated by the river 0 days, 13 days, 127 days, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, % C, % N) and microbial communities (16S and ITS rRNA gene sequencing, qPCR) were driven by differences in elevation and thus inundation history. Microbial respiration did not differ significantly across elevations prior to inundation. Inundation suppressed microbial respiration relative to uninundated sediment across all elevations, but the degree of suppression was dramatically different between the elevations saturated and unsaturated during sampling, indicating a binary threshold response. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO2. Upon re–wetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts via a shift in composition. Our results indicate that the time between inundation events can push the system into alternate states: we suggest that (i) above some threshold of inundation–interval, re–inundation suppresses respiration to a consistent, low rate, and (ii) that below some inundation–interval, re–inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.


Author(s):  
Christen L. Grettenberger ◽  
Trinity L. Hamilton

Acid mine drainage (AMD) is a global problem in which iron sulfide minerals oxidize and generate acidic, metal-rich water. Bioremediation relies on understanding how microbial communities inhabiting an AMD site contribute to biogeochemical cycling. A number of studies have reported community composition in AMD sites from 16S rRNA gene amplicons but it remains difficult to link taxa to function, especially in the absence of closely related cultured species or those with published genomes. Unfortunately, there is a paucity of genomes and cultured taxa from AMD environments. Here, we report 29 novel metagenome assembled genomes from Cabin Branch, an AMD site in the Daniel Boone National Forest, KY, USA. The genomes span 11 bacterial phyla and one Archaea and include taxa that contribute to carbon, nitrogen, sulfur, and iron cycling. These data reveal overlooked taxa that contribute to carbon fixation in AMD sites as well as uncharacterized Fe(II)-oxidizing bacteria. These data provide additional context for 16S rRNA gene studies, add to our understanding of the taxa involved in biogeochemical cycling in AMD environments, and can inform bioremediation strategies. IMPORTANCE Bioremediating acid mine drainage requires understanding how microbial communities influence geochemical cycling of iron and sulfur and biologically important elements like carbon and nitrogen. Research in this area has provided an abundance of 16S rRNA gene amplicon data. However, linking these data to metabolisms is difficult because many AMD taxa are uncultured or lack published genomes. Here, we present metagenome assembled genomes from 29 novel AMD taxa and detail their metabolic potential. These data provide information on AMD taxa that could be important for bioremediation strategies including taxa that are involved in cycling iron, sulfur, carbon, and nitrogen.


2020 ◽  
Author(s):  
Zhichao Zhou ◽  
Patricia Q Tran ◽  
Adam M Breister ◽  
Yang Liu ◽  
Kristopher Kieft ◽  
...  

Abstract Background: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent, however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and contributions to biogeochemical cycling. Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, identification of metabolism markers, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the community, potential microbial metabolic handoffs and metabolite exchange, and calculation of microbial community contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or from single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, and community-scale metabolic networks using a newly defined metric ‘MN-score’ (metabolic network score). METABOLIC takes ~3 hours with 40 CPU threads to process ~100 genomes and metagenomic reads within which the most compute-demanding part of hmmsearch takes ~45 mins, while it takes ~5 hours to complete hmmsearch for ~3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.Conclusion: METABOLIC enables consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3.


2021 ◽  
Vol 9 (7) ◽  
pp. 1406
Author(s):  
Mylène Hugoni ◽  
William Galland ◽  
Solène Lecomte ◽  
Maxime Bruto ◽  
Mohamed Barakat ◽  
...  

Some plant secondary metabolites, such as procyanidins, have been demonstrated to cause biological denitrification inhibition (BDI) of denitrifiers in soils concomitantly with a gain in plant biomass. The present work evaluated whether procyanidins had an impact on the diversity of nontarget microbial communities that are probably involved in soil fertility and ecosystem services. Lettuce plants were grown in two contrasting soils, namely Manziat (a loamy sand soil) and Serail (a sandy clay loam soil) with and without procyanidin amendment. Microbial diversity was assessed using Illumina sequencing of prokaryotic 16S rRNA gene and fungal ITS regions. We used a functional inference to evaluate the putative microbial functions present in both soils and reconstructed the microbial interaction network. The results showed a segregation of soil microbiomes present in Serail and Manziat that were dependent on specific soil edaphic variables. For example, Deltaproteobacteria was related to total nitrogen content in Manziat, while Leotiomycetes and Firmicutes were linked to Ca2+ in Serail. Procyanidin amendment did not affect the diversity and putative activity of microbial communities. In contrast, microbial interactions differed according to procyanidin amendment, with the results showing an enrichment of Entotheonellaeota and Mucoromycota in Serail soil and of Dependentiae and Rozellomycetes in Manziat soil.


2019 ◽  
Author(s):  
Zhichao Zhou ◽  
Patricia Q. Tran ◽  
Adam M. Breister ◽  
Yang Liu ◽  
Kristopher Kieft ◽  
...  

ABSTRACTBackgroundAdvances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent, however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and contributions to biogeochemical cycling.ResultsWe present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, identification of metabolism markers, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the community, potential microbial metabolic handoffs and metabolite exchange, and calculation of microbial community contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or from single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, and community-scale metabolic networks using a newly defined metric ‘MN-score’ (metabolic network score). METABOLIC takes ∼3 hours with 40 CPU threads to process ∼100 genomes and metagenomic reads within which the most compute-demanding part of hmmsearch takes ∼45 mins, while it takes ∼5 hours to complete hmmsearch for ∼3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.ConclusionMETABOLIC enables consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3.


Author(s):  
Cyrus Rutere ◽  
Malte Posselt ◽  
Adrian Ho ◽  
Marcus A. Horn

Abstract Metoprolol is widely used as a beta-blocker and considered an emerging contaminant of environmental concern due to pseudo persistence in wastewater effluents that poses a potential ecotoxicological threat to aquatic ecosystems. Microbial removal of metoprolol in the redox-delineated hyporheic zone (HZ) was investigated using streambed sediments supplemented with 15 or 150 μM metoprolol in a laboratory microcosm incubation under oxic and anoxic conditions. Metoprolol disappeared from the aqueous phase under oxic and anoxic conditions within 65 and 72 days, respectively. Metoprolol was refed twice after initial depletion resulting in accelerated disappearance under both conditions. Metoprolol disappearance was marginal in sterile control microcosms with autoclaved sediment. Metoprolol was transformed mainly to metoprolol acid in oxic microcosms, while metoprolol acid and α-hydroxymetoprolol were formed in anoxic microcosms. Transformation products were transient and disappeared within 30 days under both conditions. Effects of metoprolol on the HZ bacterial community were evaluated using DNA- and RNA-based time-resolved amplicon Illumina MiSeq sequencing targeting the 16S rRNA gene and 16S rRNA, respectively, and were prominent on 16S rRNA rather than 16S rRNA gene level suggesting moderate metoprolol-induced activity-level changes. A positive impact of metoprolol on Sphingomonadaceae and Enterobacteriaceae under oxic and anoxic conditions, respectively, was observed. Nitrifiers were impaired by metoprolol under oxic and anoxic conditions. Collectively, our findings revealed high metoprolol biodegradation potentials in the hyporheic zone under contrasting redox conditions associated with changes in the active microbial communities, thus contributing to the attenuation of micropollutants. Key points • High biotic oxic and anoxic metoprolol degradation potentials in the hyporheic zone. • Key metoprolol-associated taxa included Sphingomonadaceae, Enterobacteraceae, and Promicromonosporaceae. • Negative impact of metoprolol on nitrifiers.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6044 ◽  
Author(s):  
Yan Zhu ◽  
Yingying Cao ◽  
Min Yang ◽  
Pengchen Wen ◽  
Lei Cao ◽  
...  

Qula is a cheese-like product usually prepared with unpasteurized yak milk under open conditions, with both endogenous and exogenous microorganisms involved in the fermentation process. In the present study, 15 Qula samples were collected from five different regions in China to investigate the diversity of microbial communities using high-throughput sequencing targeting the V3–V4 region of 16S rRNA gene. The bacterial diversity significantly differed among samples of different origins, indicating a possible effect of geography. The result also showed that microbial communities significantly differed in samples of different origin and these differences were greater at the genus than the phylum level. A total of six phyla were identified in the samples, and Firmicutes and Proteobacteria had a relative abundance >20%. A total of 73 bacterial genera were identified in the samples. Two dominant genera (Lactobacillus and Acetobacter) were common to all samples, and a total of 47 operational taxonomic units at different levels significantly differed between samples of different origin. The predicted functional genes of the bacteria present in samples also indicated differences in bacterial communities between the samples of different origin. The network analysis showed that microbial interactions between bacterial communities in Qula were very complex. This study lays a foundation for further investigations into its food ecology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nighat Perveen ◽  
Sabir Bin Muzaffar ◽  
Ranjit Vijayan ◽  
Mohammad Ali Al-Deeb

Abstract Hyalomma dromedarii is an important blood-feeding ectoparasite that affects the health of camels. We assessed the profile of bacterial communities associated with H. dromedarii collected from camels in the eastern part of the UAE in 2010 and 2019. A total of 100 partially engorged female ticks were taken from tick samples collected from camels (n = 100; 50/year) and subjected to DNA extraction and sequencing. The 16S rRNA gene was amplified from genomic DNA and sequenced using Illumina MiSeq platform to elucidate the bacterial communities. Principle Coordinates Analysis (PCoA) was conducted to determine patterns of diversity in bacterial communities. In 2010 and 2019, we obtained 899,574 and 781,452 read counts and these formed 371 and 191 operational taxonomic units (OTUs, clustered at 97% similarity), respectively. In both years, twenty-five bacterial families with high relative abundance were detected and the following were the most common: Moraxellaceae, Enterobacteriaceae, Staphylococcaceae, Bacillaceae, Corynebacteriaceae, Flavobacteriaceae, Francisellaceae, Muribaculaceae, Neisseriaceae, and Pseudomonadaceae. Francisellaceae and Enterobacteriaceae coexist in H. dromedarii and we suggest that they thrive under similar conditions and microbial interactions inside the host. Comparisons of diversity indicated that microbial communities differed in terms of richness and evenness between 2010 and 2019, with higher richness but lower evenness in communities in 2010. Principle coordinates analyses showed clear clusters separating microbial communities in 2010 and 2019. The differences in communities suggested that the repertoire of microbial communities have shifted. In particular, the significant increase in dominance of Francisella and the presence of bacterial families containing pathogenic genera shows that H. dromedarii poses a serious health risk to camels and people who interact with them. Thus, it may be wise to introduce active surveillance of key genera that constitute a health hazard in the livestock industry to protect livestock and people.


2020 ◽  
Author(s):  
Christen L. Grettenberger ◽  
Trinity L. Hamilton

ABSTRACTAcid mine drainage (AMD) is a global problem in which iron sulfide minerals oxidize and generate acidic, metal-rich water. Bioremediation relies on understanding how microbial communities inhabiting an AMD site contribute to biogeochemical cycling. A number of studies have reported community composition in AMD sites from16S rRNA gene amplicons but it remains difficult to link taxa to function, especially in the absence of closely related cultured species or those with published genomes. Unfortunately, there is a paucity of genomes and cultured taxa from AMD environments. Here, we report 29 novel metagenome assembled genomes from Cabin Branch, an AMD site in the Daniel Boone National Forest, KY, USA. The genomes span 11 bacterial phyla and include one Archaea and include taxa that contribute to carbon, nitrogen, sulfur, and iron cycling. These data reveal overlooked taxa that contribute to carbon fixation in AMD sites as well as uncharacterized Fe(II)-oxidizing bacteria. These data provide additional context for 16S rRNA gene studies, add to our understanding of the taxa involved in biogeochemical cycling in AMD environments, and can inform bioremediation strategies.IMPORTANCEBioremediating acid mine drainage requires understanding how microbial communities influence geochemical cycling of iron and sulfur and biologically important elements like carbon and nitrogen. Research in this area has provided an abundance of 16S rRNA gene amplicon data. However, linking these data to metabolisms is difficult because many AMD taxa are uncultured or lack published genomes. Here, we present metagenome assembled genomes from 29 novel AMD taxa and detail their metabolic potential. These data provide information on AMD taxa that could be important for bioremediation strategies including taxa that are involved in cycling iron, sulfur, carbon, and nitrogen.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document