scholarly journals Carbon–climate feedbacks accelerate ocean acidification

2018 ◽  
Vol 15 (6) ◽  
pp. 1721-1732 ◽  
Author(s):  
Richard J. Matear ◽  
Andrew Lenton

Abstract. Carbon–climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon–climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon–climate feedbacks. We show that simulated carbon–climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon–climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon–climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon–climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon–climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon–climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon–climate feedbacks and ensure we do not underestimate the projected ocean acidification.

2017 ◽  
Author(s):  
Richard J. Matear ◽  
Andrew Lenton

Abstract. Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future trajectory for ocean acidification. Here, we use the CO2 emissions scenarios from 4 Representative Concentration Pathways (RCPs) with an Earth System Model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of under-saturated aragonite conditions in the Southern and Arctic Oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under higher emission scenarios (RCP8.5 and RCP6.0), the carbon-climate feedbacks advance the onset of under-saturation conditions and the reduction in suitable coral reef habitat by a decade or more. The impact of the carbon-climate feedback is most significant for the medium (RCP4.5) and low emission (RCP2.6) scenarios. For RCP4.5 scenario by 2100, the carbon-climate feedbacks nearly double the area of surface water under-saturated respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For RCP2.6 scenario by 2100, the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of under-saturated surface water by 20 %. The high sensitivity of the impact of ocean acidification to the carbon-climate feedbacks in the low to medium emissions scenarios is important because our recent commitments to reduce CO2 emissions are trying to move us on to such an emissions scenario. The study highlights the need to better characterise the carbon-climate feedbacks to ensure we do not excessively stress the oceans by under-estimating the future impact of ocean acidification.


2018 ◽  
Vol 242 ◽  
pp. 53-61 ◽  
Author(s):  
Romina Beleggia ◽  
Mariagiovanna Fragasso ◽  
Franco Miglietta ◽  
Luigi Cattivelli ◽  
Valeria Menga ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
pp. 1627-1644
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Ellen E. Martin ◽  
Åsa K. Rennermalm ◽  
Shaily Rahman

Abstract. Accelerated melting of the Greenland Ice Sheet has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of Greenland Ice Sheet meltwater on Arctic greenhouse gas budgets. We evaluate subglacial discharge from the Greenland Ice Sheet for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks. We compare discharge from southwest (a sub-catchment of the Isunnguata Glacier, sub-Isunnguata, and the Russell Glacier) and southern Greenland (Kiattut Sermiat). Meltwater CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat. In contrast, meltwaters from southwest sites are supersaturated, even though oxidation reduces CH4 concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at sub-Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites; however, differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. At the sub-Isunnguata site, the predominant source of CO2 is organic matter (OM) remineralization. However, multiple or heterogeneous subglacial CO2 sources maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat, where CO2 is undersaturated. These results highlight a previously unrecognized degree of heterogeneity in greenhouse gas dynamics under the Greenland Ice Sheet. Future work should constrain the extent and controls of heterogeneity to improve our understanding of the impact of Greenland Ice Sheet melt on Arctic greenhouse gas budgets, as well as the role of continental ice sheets in greenhouse gas variations over glacial–interglacial timescales.


Geology ◽  
2021 ◽  
Author(s):  
Germán Mora ◽  
Ana M. Carmo ◽  
William Elliott

The sensitivity of plant carbon isotope fractionation (13Δleaf) to changes in atmospheric CO2 concentrations (Ca) is the subject of heavy debate, with some studies finding no sensitivity, while others show a strong dependency. We tested the hypothesis of photosynthetic homeostasis by using δ13C of n-alkanes, cuticles, and bulk organic matter of gymnosperm-rich rocks (Arundel Clay) from two sites deposited during the Aptian, a time that experienced significant Ca variations. Our results show no effect of Ca on 13Δleaf, and a relatively constant Ci/Ca (0.64 ± 0.04, 1σ; i—intercellular space), a value that is similar to that of modern gymnosperms. These results suggest that Aptian gymnosperms used homeostatic adjustments with rising Ca, probably involving increased carbon assimilation and/or stomatal closure, a response also found in modern gymnosperms. The similarity between Aptian and modern gymnosperms suggests that the processes responsible for regulating CO2 and water vapor exchange during photosynthesis have remained unaltered in gymnosperms for the past 128 m.y.


Sign in / Sign up

Export Citation Format

Share Document