scholarly journals High-frequency variability of CO<sub>2</sub> in Grand Passage, Bay of Fundy, Nova Scotia

2019 ◽  
Vol 16 (2) ◽  
pp. 605-616 ◽  
Author(s):  
Rachel M. Horwitz ◽  
Alex E. Hay ◽  
William J. Burt ◽  
Richard A. Cheel ◽  
Joseph Salisbury ◽  
...  

Abstract. Assessing changes in the marine carbon cycle arising from anthropogenic CO2 emissions requires a detailed understanding of the carbonate system's natural variability. Coastal ecosystems vary over short spatial and temporal scales, so their dynamics are not well described by long-term and broad regional averages. A year-long time series of pCO2, temperature, salinity, and currents is used to quantify the high-frequency variability of the carbonate system at the mouth of the Bay of Fundy, Nova Scotia. The seasonal cycle of pCO2 is modulated by a diel cycle that is larger in summer than in winter and a tidal contribution that is primarily M2, with amplitude roughly half that of the diel cycle throughout the year. The interaction between tidal currents and carbonate system variables leads to lateral transport by tidal pumping, which moves alkalinity and dissolved inorganic carbon (DIC) out of the bay, opposite to the mean flow in the region, and constitutes a new feature of how this strongly tidal region connects to the larger Gulf of Maine and northwest Atlantic carbon system. These results suggest that tidal pumping could substantially modulate the coastal ocean's response to global ocean acidification in any region with large tides and spatial variation in biological activity, requiring that high-frequency variability be accounted for in assessments of carbon budgets of coastal regions.

2018 ◽  
Author(s):  
Rachel M. Horwitz ◽  
Alex E. Hay ◽  
William Burt ◽  
Richard Cheel ◽  
Joseph Salisbury ◽  
...  

Abstract. Assessing changes in the marine carbon cycle arising from anthropogenic CO2 emissions requires a detailed understanding of the carbonate system's natural variability. Coastal ecosystems vary over short spatial and temporal scales, so their dynamics are not well-described by long-term and broad regional averages. A year-long time series of pCO2, temperature, salinity, and currents is used to quantify the high-frequency variability of the carbonate system at the mouth of the Bay of Fundy, Nova Scotia. The seasonal cycle of pCO2 is modulated by a diel cycle that is larger in summer than in winter, and a tidal contribution that is primarily M2, with amplitude roughly half that of the diel cycle throughout the year. The interaction between tidal currents and carbonate system variables leads to lateral transport by tidal pumping, which moves alkalinity and DIC out of the bay, opposite to the mean flow in the region, and constitutes a new feature of how this strongly tidal region connects to the larger Gulf of Maine and Northwest Atlantic carbon system. These results suggest that tidal pumping could substantially modulate the coastal ocean's response to global ocean acidification in any region with large tides and spatial variation in biological activity, requiring that high-frequency variability be accounted for in assessments of carbon budgets of coastal regions.


Ocean Science ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 847-862 ◽  
Author(s):  
Olivier Sulpis ◽  
Siv K. Lauvset ◽  
Mathilde Hagens

Abstract. Seawater absorption of anthropogenic atmospheric carbon dioxide (CO2) has led to a range of changes in carbonate chemistry, collectively referred to as ocean acidification. Stoichiometric dissociation constants used to convert measured carbonate system variables (pH, pCO2, dissolved inorganic carbon, total alkalinity) into globally comparable parameters are crucial for accurately quantifying these changes. The temperature and salinity coefficients of these constants have generally been experimentally derived under controlled laboratory conditions. Here, we use field measurements of carbonate system variables taken from the Global Ocean Data Analysis Project version 2 and the Surface Ocean CO2 Atlas data products to evaluate the temperature dependence of the carbonic acid stoichiometric dissociation constants. By applying a novel iterative procedure to a large dataset of 948 surface-water, quality-controlled samples where four carbonate system variables were independently measured, we show that the set of equations published by Lueker et al. (2000), currently preferred by the ocean acidification community, overestimates the stoichiometric dissociation constants at temperatures below about 8 ∘C. We apply these newly derived temperature coefficients to high-latitude Argo float and cruise data to quantify the effects on surface-water pCO2 and calcite saturation states. These findings highlight the critical implications of uncertainty in stoichiometric dissociation constants for future projections of ocean acidification in polar regions and the need to improve knowledge of what causes the CO2 system inconsistencies in cold waters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Catalina Aguirre ◽  
René Garreaud ◽  
Lucy Belmar ◽  
Laura Farías ◽  
Laura Ramajo ◽  
...  

The ocean off south-central Chile is subject to seasonal upwelling whose intensity is mainly controlled by the latitudinal migration of the southeast Pacific subtropical anticyclone. During austral spring and summer, the mean flow is equatorward favoring coastal upwelling, but periods of strong southerly winds are intermixed with periods of relaxed southerlies or weak northerly winds (downwelling favorable). This sub-seasonal, high-frequency variability of the coastal winds results in pronounced changes in oceanographic conditions and air-sea heat and gas exchanges, whose quantitative description has been limited by the lack of in-situ monitoring. In this study, high frequency fluctuations of meteorological, oceanographic and biogeochemical near surface variables were analyzed during two consecutive upwelling seasons (2016–17 and 2017–18) using observations from a coastal buoy located in the continental shelf off south-central Chile (36.4°S, 73°W), ∼10 km off the coast. The radiative-driven diel cycle is noticeable in meteorological variables but less pronounced for oceanographic and biogeochemical variables [ocean temperature, nitrate (NO3−), partial pressure of carbon dioxide (pCO2sea), pH, dissolved oxygen (DO)]. Fluorescence, as a proxy of chlorophyll-a, showed diel variations more controlled by biological processes. In the synoptic scale, 23 active upwelling events (strong southerlies, lasting between 2 and 15 days, 6 days in average) were identified, alternated with periods of relaxed southerlies of shorter duration (4.5 days in average). Upwelling events were related to the development of an atmospheric low-level coastal jet in response to an intense along-shore pressure gradient. Physical and biogeochemical surface seawater properties responded to upwelling favorable wind stress with approximately a 12-h lag. During upwelling events, SST, DO and pH decrease, while NO3−, pCO2sea, and air-sea fluxes increases. During the relaxed southerly wind periods, opposite tendencies were observed. The fluorescence response to wind variations is complex and diverse, but in many cases there was a reduction in the phytoplankton biomass during the upwelling events followed by higher values during wind relaxations. The sub-seasonal variability of the coastal ocean characterized here is important for biogeochemical and productivity studies.


2020 ◽  
Author(s):  
Olivier Sulpis ◽  
Siv K. Lauvset ◽  
Mathilde Hagens

Abstract. Seawater absorption of anthropogenic atmospheric carbon dioxide (CO2) has led to a range of changes in carbonate chemistry, collectively referred to as ocean acidification. Stoichiometric dissociation constants used to convert measured carbonate system variables (pH, pCO2, dissolved inorganic carbon, total alkalinity) into globally comparable parameters are crucial for accurately quantifying these changes. The temperature and salinity coefficients of these constants have generally been experimentally derived under controlled laboratory conditions. Here, we use field measurements of carbonate system variables taken from the Global Ocean Data Analysis Project version 2 and the Surface Ocean CO2 Atlas databases to evaluate the temperature dependence of the carbonic acid stoichiometric dissociation constants. By applying a novel iterative procedure to a large dataset of 948 surface-water, quality-controlled samples where four carbonate system variables were independently measured, we show that the set of equations published by Lueker et al. (2000), currently preferred by the ocean acidification community, overestimates the stoichiometric dissociation constants at low temperatures, below ~ 8 °C. We apply these newly derived temperature coefficients to high-latitude Argo float and cruise data to quantify the effects on surface-water pCO2 and calcite saturation states. These findings highlight the critical implications of uncertainty in stoichiometric dissociation constants for future projections of ocean acidification in polar regions, and the need to improve knowledge of what causes the CO2 system inconsistencies in cold waters.


2020 ◽  
Author(s):  
Luke Gregor ◽  
Nicolas Gruber

Abstract. Ocean acidification has altered the ocean's carbonate chemistry profoundly since preindustrial times, with potentially serious consequences for marine life. Yet, no long-term global observation-based data set exists that permits to study changes in ocean acidification for all carbonate system parameters over the last few decades. Here, we fill this gap and present a methodologically consistent global data set of all relevant surface ocean parameters, i.e., dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), pH, and the saturation state with respect to mineral CaCO3 (Ω) at monthly resolution over the period 1985 through 2018 at a spatial resolution of 1 × 1°. This data set, named OceanSODA-ETHZ, was created by extrapolating in time and space the surface ocean observations of pCO2 (from the Surface Ocean CO2 ATlas (SOCAT)) and total alkalinity (TA, from the Global Ocean Data Analysis Project (GLODAP)) using the newly developed Geospatial Random Cluster Ensemble Regression (GRaCER) method. This method is based on a two-step (cluster-regression) approach, but extends it by considering an ensemble of such cluster-regressions, leading to higher robustness. Surface ocean DIC, pH, and Ω were then computed from the globally mapped pCO2 and TA using the thermodynamic equations of the carbonate system. For the open ocean, the cluster regression method estimates pCO2 and TA with global near-zero biases and root mean squared errors of 12 µatm and 13 µmol kg−1, respectively. Taking into account also the measurement and representation errors, the total error increases to 14 µatm and 21 µmol kg−1, respectively. We assess the fidelity of the computed parameters by comparing them to direct observations from GLODAP, finding surface ocean pH and DIC global biases of near zero, and root mean squared errors of 0.023 and 16 µmol kg−1, respectively. These errors are very comparable to those expected by propagating the total errors from pCO2 and TA through the thermodynamic computations, indicating a robust and conservative assessment of the errors. We illustrate the potential of this new dataset by analyzing the climatological mean seasonal cycles of the different parameters of the surface ocean carbonate system, highlighting their commonalities and differences. The OceanSODA-ETHZ data can be downloaded from https://doi.org/10.25921/m5wx-ja34 (Gregor and Gruber, 2020).


1975 ◽  
Vol 32 (7) ◽  
pp. 1019-1040 ◽  
Author(s):  
Edward Mitchell ◽  
V. Michael Kozicki

A 615-cm male northern bottlenose whale (Hyperoodon ampullatus) stranded in Cobequid Bay, Bay of Fundy, in early October 1969. The skull, mandible, tympano-periotics, and teeth are described and illustrated. Five growth layers in the lower teeth place the animal below a growth curve based on samples from the Labrador Sea taken in May and June. A summary of nine other North American occurrences of 12 individuals, mainly south of Sable Island, indicates a winter migration to waters offshore of Massachusetts and Rhode Island.


1986 ◽  
Vol 43 (2) ◽  
pp. 444-456 ◽  
Author(s):  
J. C. H. Carter ◽  
W. D. Taylor ◽  
R. Chengalath ◽  
D. A. Scruton

Crustacean and rotifer plankton assemblages of 93 lakes in Labrador, 107 in Newfoundland, and 142 in New Brunswick – Nova Scotia were investigated for evidence of correlations with lake morphometric, chemical, or biological factors. Labrador assemblages were almost completely lacking in identifiable structure. Newfoundland species clustered into two groups of different body size, suggesting the influence of fish predation. Only one species in Labrador and Newfoundland was significantly correlated with a derived factor related to lake water buffering capacity. New Brunswick – Nova Scotia species clustered into two groups, one featuring significant positive and the other significant negative correlations with the buffering factor. From this we conclude that acidification is having an impact on the limnetic zooplankton of these two provinces. Multiple discriminant analysis was used to demonstrate that New Brunswick – Nova Scotia lakes differing in their buffering capacity were also distinct in zooplankton composition. Lakes with low factor scores (low pH, alkalinity, and calcium) were mainly located in the Bay of Fundy region; this area has above average fog and precipitation, and lies within the summer air flow carrying pollutants from the south.


2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


Sign in / Sign up

Export Citation Format

Share Document