benthic fluxes
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 21)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 574 ◽  
pp. 117163
Author(s):  
David J. Janssen ◽  
Jörg Rickli ◽  
April N. Abbott ◽  
Michael J. Ellwood ◽  
Benjamin S. Twining ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2323
Author(s):  
Robert R. Twilley ◽  
Silke Rick ◽  
Daniel C. Bond ◽  
Justin Baker

We measured benthic fluxes of dissolved nutrients in subtidal sediments and intertidal soils associated with river-pulse events from Mississippi River via the operation of a river diversion structure at Caernarvon, LA. Experiments measuring benthic fluxes in subtidal habitats were conducted during the early spring flood pulse (February and March) each year from 2002 to 2004, compared to benthic fluxes of intertidal habitats measured in February and March 2004. Nitrate (NO3−) uptake rates for subtidal sediments and intertidal soils depended on overlying water NO3− concentrations at near-, mid-, and far-field locations during river-pulse experiments when water temperatures were >13 °C (NO3− removal was limited below this temperature threshold). NO3− loading to upper Breton Sound was estimated for nine river-pulse events (January, February, and March in 2002, 2003, and 2004) and compared to NO3− removal estimated by the subtidal and intertidal habitats based on connectivity, area, and flux rates as a function of NO3− concentration and water temperature. Most NO3− removal was accomplished by intertidal habitats compared to subtidal habitats with the total NO3− reduction ranging from 8% to 31%, depending on water temperature and diversion discharge rates. River diversion operations have important ecosystem design considerations to reduce the negative effects of eutrophication in downstream coastal waters.


2021 ◽  
Vol 782 ◽  
pp. 146853
Author(s):  
Astrid Hylén ◽  
Daniel Taylor ◽  
Mikhail Kononets ◽  
Mats Lindegarth ◽  
Anna Stedt ◽  
...  

2021 ◽  
Author(s):  
David J Janssen ◽  
Jörg Rickli ◽  
April N Abbott ◽  
Michael J Ellwood ◽  
Benjamin S Twining ◽  
...  

2021 ◽  
Author(s):  
Zuzanna Borawska ◽  
Beata Szymczycha ◽  
Marc J. Silberberger ◽  
Marta Szczepanek ◽  
Katarzyna Koziorowska-Makuch ◽  
...  

<p>Dissolved silica (DSi) is an important macronutrient in the marine environment, necessary for growth of many aquatic organisms. Yet, DSi marine cycle is still not fully recognized, especially in dynamic, coastal zones. Although DSi is mainly transported to the sea by rivers, benthic fluxes of DSi, which originate from dissolution of the siliceous remains in the sediments, can also represent an important source of bioavailable silicon in the ocean. Benthic DSi fluxes are mainly powered by diffusion, but their rates are strongly shaped by the benthic fauna. Still, the role of benthos in these processes is not fully recognized. The main goal of this study was to investigate how various environmental factors and benthic fauna may shape the coastal cycle of Si in coastal environments during different seasons.</p><p>Our study was conducted in the shallow coastal ecosystems of the southern Baltic Sea characterized by contrasting environmental conditions: shallow, brackish and enclosed Szczecin Lagoon (Oder river estuary), dynamic open waters near Łeba with relatively low anthropogenic influence, enclosed Puck Bay and Vistula prodelta. We investigated both shore ecosystems (app. 0.5 m depth) and deeper areas (from 6 up to 60 m depth). DSi concentrations in the bottom waters and environmental characteristics (T, S, O<sub>2</sub>, sediment organic matter) were investigated at 6 stations, during three seasons (winter, spring and autumn) in years 2019-2020 with s/y Oceania (IOPAN) and directly from the shore. Additionally, samples from shore stations were collected during summer. DSi benthic fluxes were determined at each station by performing <em>ex situ</em> incubations of sediment cores (n = 4-5) with natural benthic assemblages. The benthic organisms in studied cores were collected, identified, counted, and weighed.</p><p>The lowest fluxes were measured at sandy stations while highest return fluxes were observed at muddy sites. High variability in DSi benthic fluxes along studied localities was observed, ranging from -1.11 mmol d<sup>-1</sup>m<sup>-2</sup> in summer at shore station in the Puck Bay and up to 6.79 mmol d<sup>-1</sup>m<sup>-2</sup> in Szczecin Lagoon in autumn. We used  Gaussian Generalized Linear Models (GLMs) to estimate the role of environmental conditions, benthic fauna characteristics  and interactions among them in the variability of DSi benthic flux across studied localities. The most important predictors for the fluxes were all pair-wise interactions of temperature, total organic carbon, the C/N molar ratio, and the density of benthic macrofauna. Both interaction terms that included C/N ratio, a measure of organic matter quality (i.e. low C/N ratio indicates higher quality), were associated with increased DSi uptake by the sediment. Further, the interaction term between T and benthic marcofauna density was also linked to negative benthic fluxes of DSi. In contrast, the interaction of T and TOC caused a strong increase in DSi return fluxes.</p>


2021 ◽  
Author(s):  
Julie Regis ◽  
Samuel Meulé ◽  
Patrick Verdoux ◽  
Isabelle Techer ◽  
Sylvain Rigaud

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3125
Author(s):  
Marco Bartoli ◽  
Sara Benelli ◽  
Monia Magri ◽  
Cristina Ribaudo ◽  
Paula Carpintero Moraes ◽  
...  

Macrofauna can produce contrasting biogeochemical effects in intact and reconstructed sediments. We measured benthic fluxes of oxygen, inorganic carbon, and nitrogen and denitrification rates in intact sediments dominated by a filter and a deposit feeder and in reconstructed sediments added with increasing densities of the same organisms. Measurements in reconstructed sediments were carried out 5 days after macrofauna addition. The degree of stimulation of the measured fluxes in the intact and reconstructed sediments was then compared. Results confirmed that high densities of bioturbating macrofauna produce profound effects on sediment biogeochemistry, enhancing benthic respiration and ammonium recycling by up to a factor of ~3 and ~9, respectively, as compared to control sediments. The deposit feeder also increased total denitrification by a factor of ~2, whereas the filter feeder activity did not stimulate nitrogen removal. Moreover, the effects of deposit feeders on benthic fluxes were significantly higher (e.g., on respiration and ammonium recycling) or different (e.g., on denitrification) when measured in intact and reconstructed sediments. In intact sediments, deposit feeders enhanced the denitrification coupled to nitrification and had no effects on the denitrification of water column nitrate, whereas in reconstructed sediments, the opposite was true. This may reflect active burrowing in reconstructed sediments and the long time needed for slow growing nitrifiers to develop within burrows. Results suggest that, in bioturbation studies, oversimplified experimental approaches and insufficient preincubation time might lead to wrong interpretation of the role of macrofauna in sediment biogeochemistry, far from that occurring in nature.


Sign in / Sign up

Export Citation Format

Share Document