thermocline ventilation
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Romain Caneill ◽  
Fabien Roquet ◽  
Gurvan Madec ◽  
Jonas Nycander

<p>The stratification is primarily controlled by the temperature in subtropical regions (alpha ocean), and by salinity in subpolar regions (beta ocean). Between these two regions lies a transition zone where intense frontal systems are usually found, either in the Southern Ocean or in the North Atlantic and North Pacific basins. Transition zones are often characterized by deep mixed layers in winter responsible for the ventilation of intermediate layers. Here we want to investigate what determines the latitudinal position of the transition zone. It is generally assumed that this position is set by the wind stress pattern forcing Ekman downwelling, however the position of the transition zone does not match so well the wind stress convergence zone in the observations. Another possibility would be that it is controlled by the distribution of air-sea fluxes. The equation of state (EOS) for seawater determines the relative impact of heat and freshwater forcing on the buoyancy forcing. A key property of seawater is that the density becomes less sensitive to temperature at low temperatures (caused by an important nonlinearity of the EOS), increasing the effect of salinity on the stratification in polar region. We hypothesize that the decreasing of the relative influence of temperature on density is a major component in setting the position of the transition zone. To test this hypothesis, we developed an idealized triple-gyre configuration with the ocean global circulation model NEMO (Nucleus for European Modelling of the Ocean). A range of simplified EOS have been ran to test the effect of the buoyancy forcing on the position of the transition zone and the convective area. Under restoring conditions for the temperature and the salinity, augmenting or reducing the sensitivity of the density to the temperature is used as a way to modify the relative contribution of temperature and salinity to the buoyancy forcing. We show that the position of the convective area corresponds to a surface density maximum and is not directly related to the Ekman pumping zone. Moreover, alpha - beta ocean distinction becomes possible because the EOS is nonlinear. The first order influence of the forcing evolution on setting the localization of the transition zone and the associated deep water formation challenges the classical theories of thermocline ventilation by Ekman pumping.</p>


2019 ◽  
Vol 14 (7) ◽  
pp. 075007 ◽  
Author(s):  
Fortunat Joos ◽  
Gianna Battaglia ◽  
Hubertus Fischer ◽  
Aurich Jeltsch-Thömmes ◽  
Jochen Schmitt

2013 ◽  
Vol 10 (3) ◽  
pp. 1815-1833 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
S. A. Müller ◽  
K. I. C. Oliver ◽  
R. M. Death ◽  
...  

Abstract. We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late-Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD). We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC) δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (pre-industrial) and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally-reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Nathalie F. Goodkin ◽  
Ellen R. M. Druffel ◽  
Konrad A. Hughen ◽  
Scott C. Doney

2010 ◽  
Vol 40 (3) ◽  
pp. 509-529 ◽  
Author(s):  
Jean-Baptiste Sallée ◽  
Kevin Speer ◽  
Steve Rintoul ◽  
S. Wijffels

Abstract An approximate mass (volume) budget in the surface layer of the Southern Ocean is used to investigate the intensity and regional variability of the ventilation process, discussed here in terms of subduction and upwelling. Ventilation resulting from Ekman pumping is estimated from satellite winds, the geostrophic mean component is assessed from a climatology strengthened with Argo data, and the eddy-induced advection is included via the parameterization of Gent and McWilliams, together with eddy mixing estimates. All three components contribute significantly to ventilation. Finally, the seasonal cycle of the upper ocean is resolved using Argo data. The circumpolar-averaged circulation shows an upwelling in the Antarctic Intermediate Water (AAIW) density classes, which is carried north into a zone of dense Subantarctic Mode Water (SAMW) subduction. Although no consistent net production is found in the light SAMW density classes, a large subduction of Subtropical Mode Water (STMW) is observed. The STMW area is fed by convergence of a southward and a northward residual meridional circulation. The eddy-induced contribution is important for the water mass transport in the vicinity of the Antartic Circumpolar Current. It balances the horizontal northward Ekman transport as well as the vertical Ekman pumping. While the circumpolar-averaged upper cell structure is consistent with the average surface fluxes, it hides strong longitudinal regional variations and does not represent any local regime. Subduction shows strong regional variability with bathymetrically constrained hotspots of large subduction. These hotspots are consistent with the interior potential vorticity structure and circulation in the thermocline. Pools of SAMW and AAIW of different densities are found along the circumpolar belt in association with the regional pattern of subduction and interior circulation.


2001 ◽  
Vol 46 (9) ◽  
pp. 774-778 ◽  
Author(s):  
Dongxiao Wang ◽  
Yan Du ◽  
Ping Shi

Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 483-488 ◽  
Author(s):  
Koushik Dutta ◽  
Ravi Bhushan ◽  
B L K Somayajulu

Apparent marine radiocarbon ages are reported for the northern Indian Ocean region for the pre-nuclear period, based on measurements made in seven mollusk shells collected between 1930 and 1954. The conventional 14C ages of these shells range from 693 ± 44 to 434 ± 51 BP in the Arabian Sea and 511 ± 34 to 408 ± 51 BP in the Bay of Bengal. These ages correspond to mean ΔR correction values of 163 ± 30 yr for the northern Arabian Sea, 11 ± 35 yr for the eastern Bay of Bengal (Andaman Sea) and 32 ± 20 yr for the southern Bay of Bengal. Contrasting reservoir ages for these two basins are most likely due to differences in their thermocline ventilation rates.


Sign in / Sign up

Export Citation Format

Share Document