scholarly journals Active and passive fluxes of carbon, nitrogen, and phosphorus in the northern South China Sea

2021 ◽  
Vol 18 (18) ◽  
pp. 5141-5162
Author(s):  
Jia-Jang Hung ◽  
Ching-Han Tung ◽  
Zong-Ying Lin ◽  
Yuh-ling Lee Chen ◽  
Shao-Hung Peng ◽  
...  

Abstract. This paper presents the measured active and passive fluxes of carbon (C), nitrogen (N), and phosphorus (P) and their response to seasonal and event-driven oceanographic changes in the northern South China Sea (NSCS). The total vertical flux of carbon (TFC) is defined as the sum of active and passive fluxes of biogenic carbon in the surface layer, which may be considered as the central part of marine carbon cycle. These active and passive fluxes of N and P were also considered to understand stoichiometric flux patterns and the roles of nutrients involved in the TFC. The magnitudes of total C, N, and P fluxes were, respectively, estimated to be 71.9–347 (mean ± SD, 163 ± 70) mgCm-2d-1, 13.0–30.5 (21.2.± 4.9) mgNm-2d-1, and 1.02–2.97 (1.94 ± 0.44) mgPm-2d-1, which were higher than most previously reported vertical fluxes in open oceans, likely because a quarter of the fluxes was contributed from active fluxes that were unaccounted for in vertical fluxes previously. Moreover, the passive fluxes dominated the total vertical fluxes and were estimated to be 65.3–255 (125 ± 64.9) mgCm-2d-1 (77 ± 52 % of total C flux), 11.9–23.2 (17.6 ± 4.2) mgNm-2d-1 (83 ± 28 % of total N flux), and 0.89–1.98 (1.44 ± 0.33) mgPm-2d-1 (74 ± 24 % of total P flux). Vertical fluxes of dissolved organic C, N, and P were small (< 5 %) relative to passive fluxes. The contrasting patterns of active and passive fluxes found between summer and winter could mainly be attributed to surface warming and stratification in summer and cooling and wind-induced turbulence for pumping nutrients into the euphotic zone in winter. In addition to seasonal variations, the impact of anticyclonic eddies and internal-wave events on enhancing active and passive fluxes was apparent in the NSCS. Both active and passive fluxes were likely driven by nutrient availability within the euphotic zone, which was ultimately controlled by the changes in internal and external forcings. The nutrient availability also determined the inventory of chlorophyll a and new production, thereby allowing the estimates of active and passive fluxes for unmeasured events. To a first approximation, the South China Sea (SCS) may effectively transfer 0.208 ± 0.089 Gt C yr−1 into the ocean's interior, accounting for approximately 1.89 ± 0.81 % of the global C flux. The internal forcing and climatic conditions are likely critical factors in determining the seasonal and event-driven variability of total vertical fluxes in the NSCS.

2021 ◽  
Author(s):  
Jia-Jang Hung ◽  
Ching-Han Tung ◽  
Zong-Ying Lin ◽  
Yuh-Lin Lee Chen ◽  
Shao-Hung Peng ◽  
...  

Abstract. This paper presents the measured biological pumps (BPs) of carbon (C), nitrogen (N), and phosphorus (P) and their response to seasonal and event-driven oceanographic changes in the northern South China Sea (NSCS). The BP is defined as the sum of active and passive fluxes of biogenic carbon in the surface layer, which may be considered as the central part of marine carbon cycle. These active and passive fluxes of N and P were also considered to understand stoichiometric flux patterns and the roles of nutrients involved in the BP. The magnitudes of total C, N, and P fluxes were respectively estimated to be 71.9–347 (mean: 163) mg C m−2 d−1, 13.0–30.5 (mean: 21.6) mg N m−2 d−1, and 1.02–2.97 (mean: 1.94) mg P m−2 d−1, which were higher than most previously reported BPs in open oceans, likely because a quarter of the BPs was contributed from active fluxes that were unaccounted for in BPs previously. Moreover, the passive fluxes dominated the BPs and were estimated as 65.3–255 (mean: 125) mg C m−2 d−1 (76.7 % of total C flux), 11.9–23.2 (mean: 17.6) mg N m−2 d−1 (83.0 % of total N flux), and 0.89–1.98 (mean: 1.44) mg P m−2 d−1 (74.2 % of total P flux). Vertical fluxes of dissolved organic C, N, and P generally contributed to less than 5 % of passive fluxes. The contrasting patterns of active and passive fluxes found between summer and winter could mainly be attributed to surface warming and stratification in summer and cooling and wind-induced turbulence for pumping nutrients into the euphotic zone in winter. In addition to seasonal variations, the impacts of anticyclonic eddies and internal-wave events on BP enhancement was apparent in the NSCS. Both active and passive fluxes were likely driven by nutrient availability within the euphotic zone, which was ultimately controlled by the changes in internal and external forcings. The nutrient availability also determined the inventory of chlorophyll a and new production, thereby allowing the prediction of active and passive fluxes for unmeasured events. To a first approximation, the SCS may effectively transfer 0.208 Gt C yr−1 into the ocean's interior, accounting for approximately 1.89 % of the global C flux. The internal forcing and climatic conditions are likely critical factors in determining the seasonal and event-driven variability of BP in the NSCS.


2021 ◽  
Author(s):  
Ning He ◽  
Hu Yang ◽  
Fanli Xu ◽  
Yongming Cheng

Abstract A riser is a key component for transporting produced oil and gas from the subsea wells to the surface production vessel. Through nearly 30 years of design and implementation, Steel Catenary Risers (SCRs) have been found to have the advantages of relatively low cost and good adaptability to floating platform’s motion. This paper investigates deepwater SCR system design for the Lingshui 17-2 (termed LS17-2) project. This paper first introduces a SCR system for the LS17-2 project. The field for this project is located in the northern South China Sea, with water depth of 1220m to 1560m. LS17-2 consists of a subsea production system, a deep-draft semi-submersible (SEMI), and an export riser/pipeline. The platform was designed to have a large storage capacity with a variable draft during its operation. Based on deepwater SCR engineering experience, the key SCR design challenges are summarized from the engineering executive perspective. The challenges to the SCR system design for the LS17-2 project include harsh environment condition in South China Sea and the impact on fatigue design for the requirement of 30-years’ service life. They call for design optimization and innovative ideas. The engineering design and analysis are discussed together solutions. To demonstrate the deepwater SCR system design for LS17-2 project, examples are provided to illustrate the challenges and solutions. The experience learned from this paper should have significant relevance to future SCR design.


2018 ◽  
Vol 48 (6) ◽  
pp. 1349-1365 ◽  
Author(s):  
Xiaojiang Zhang ◽  
Xiaodong Huang ◽  
Zhiwei Zhang ◽  
Chun Zhou ◽  
Jiwei Tian ◽  
...  

AbstractSpatiotemporal variations in internal solitary wave (ISW) polarity over the continental shelf of the northern South China Sea (SCS) were examined based on mooring-array observations from October 2013 to June 2014. Depression ISWs were observed at the easternmost mooring, where the water depth is 323 m. Then, they evolved into elevation ISWs at the westernmost mooring, with a depth of 149 m. At the central mooring, with a depth of 250 m, the ISWs generally appeared as depression waves in autumn and spring but were elevation waves in winter. Seasonal variations in stratification caused this seasonality in polarity. On the intraseasonal time scales, anticyclonic eddies can modulate ISW polarity at the central mooring by deepening the thermocline depth for periods of approximately 8 days. During some days in autumn and spring, depression ISWs and ISWs in the process of changing polarity from depression to elevation appeared at time intervals of 10–12 h because of the thermocline deepening caused by internal tides. Isotherm anomalies associated with eddies and internal tides have a more significant contribution to determining the polarity of ISWs than do the background currents. The observational results reported here highlight the impact of multiscale processes on the evolution of ISWs.


2012 ◽  
Vol 12 (16) ◽  
pp. 7341-7350 ◽  
Author(s):  
C. M. Tseng ◽  
C. S. Liu ◽  
C. Lamborg

Abstract. The distribution of gaseous elemental mercury (GEM) was determined in the surface atmosphere of the northern South China Sea (SCS) during 12 SEATS cruises between May 2003 and December 2005. The sampling and analysis of GEM were performed on board ship by using an on-line mercury analyzer (GEMA). Distinct annual patterns were observed for the GEM with a winter maximum of 5.7 ± 0.2 ng m−3 (n = 3) and minimum in summer (2.8 ± 0.2; n = 3), with concentrations elevated 2–3 times global background values. Source tracking through backward air trajectory analysis demonstrated that during the northeast monsoon (winter), air masses came from Eurasia, bringing continental- and industrial-derived GEM to the SCS. In contrast, during summer southwest monsoon and inter-monsoon, air masses were from the Indochina Peninsula and Indian Ocean and west Pacific Ocean. This demonstrates the impact that long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS.


Author(s):  
Mei-Lin Wu ◽  
You-Shao Wang ◽  
Dong-Xiao Wang ◽  
Jun-De Dong

AbstractCoastal upwelling occurred along the west coast of Guangdong in the northern South China Sea during the summer of 2006. The effects of upwelling on the vertical and horizontal distributions of Prochlorococcus and Synechococcus were investigated. A distinct vertical temperature difference between the surface water and water at a depth of 30 m was observed in the coastal upwelling region. There was a clear spatial variability of temperature, and an increasingly obvious horizontal gradient was created from the coast to offshore waters. Picophytoplankton communities observed from the coast to offshore waters were significantly different. In the coastal upwelling waters, the picophytoplankton community was dominated by Synechococcus within the euphotic zone. Prochlorococcus dominated the picophytoplankton community in the euphotic zone in the non-upwelling region. This difference in the picophytoplankton community structure was due to different hydrodynamics. The results of canonical correspondence analysis demonstrate that temperature, salinity, and phosphate concentration may be important factors affecting the distribution of Prochlorococcus and Synechococcus.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yung‐Yen Shih ◽  
Chin‐Chang Hung ◽  
Sing‐how Tuo ◽  
Huan‐Jie Shao ◽  
Chun Hoe Chow ◽  
...  

We have investigated the effect of eddies (cold and warm eddies, CEs and WEs) on the nutrient supply to the euphotic zone and the organic carbon export from the euphotic zone to deeper parts of the water column in the northern South China Sea. Besides basic hydrographic and biogeochemical parameters, the flux of particulate organic carbon (POC), a critical index of the strength of the oceanic biological pump, was also measured at several locations within two CEs and one WE using floating sediment traps deployed below the euphotic zone. The POC flux associated with the CEs (85 ± 55 mg-C m−2 d−1) was significantly higher than that associated with the WE (20 ± 7 mg-C m−2 d−1). This was related to differences in the density structure of the water column between the two types of eddies. Within the core of the WE, downwelling created intense stratification which hindered the upward mixing of nutrients and favored the growth of small phytoplankton species. Near the periphery of the WE, nutrient replenishment from below did take place, but only to a limited extent. By far the strongest upwelling was associated with the CEs, bringing nutrients into the lower portion (∼50 m) of the euphotic zone and fueling the growth of larger-cell phytoplankton such as centric diatoms (e.g., Chaetoceros, Coscinodiscus) and dinoflagellates (e.g., Ceratium). A significant finding that emerged from all the results was the positive relationship between the phytoplankton carbon content in the subsurface layer (where the chlorophyll a maximum occurs) and the POC flux to the deep sea.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tzong-Yueh Chen ◽  
Chao-Chen Lai ◽  
Jen-Hua Tai ◽  
Chia-Ying Ko ◽  
Fuh-Kwo Shiah

Eight diel surveys on picoplankton (Prochlorococcus, Synechococcus, picoeukaryotes, and heterotrophic bacteria) abundance at the South East Asian Time-Series Station (SEATS; 18°N; 116°E) were conducted during the period of 2010 to 2014. The results indicated that Prochlorococcus and picoeukaryotes showed a subsurface maximum in warm seasons (spring, summer, and fall) and were abundant at the surface in the cold season (winter). Synechococcus and heterotrophic bacteria exhibited higher cell numbers at the surface and decreased with depth throughout the year. Although not all, some clear diel patterns for picoplankton were observed. Picophytoplankton usually peaked in the nighttime; picoeukaryotes peaked at ~7 to 8 p.m., followed by Synechococcus (peaking at 1 a.m.) and Prochlorococcus (peaking at 2 a.m.). Unlike these picoautotrophs, heterotrophic bacteria could peak either at dusk (i.e., 7 p.m.) or at noon. Seasonally, Prochlorococcus was more abundant in the warm than the cold seasons, while Synechococcus and picoeukaryotes showed blooms in the winter of 2013 and 2011, respectively. Heterotrophic bacteria showed no significant seasonality. Regression analysis indicated that ~73% of the diel-to-seasonal variation of the euphotic zone depth-integrated picophytoplankton biomass (i.e., PicoBeu) could be explained by the changes of the mixed-layer depth (MLD), and this suggested that inorganic nutrient supply could be the major controlling factor in their growth. The strong linear relationship (coefficient of determination, R2 of 0.83, p &lt; 0.01) between sea surface temperature (SST) and PicoBeu implied, for the first time, a potential of using satellite-based SST to trace the biomass of picophytoplankton in the pelagic areas of the northern South China Sea.


2012 ◽  
Vol 12 (5) ◽  
pp. 12203-12227
Author(s):  
C. M. Tseng ◽  
C. S. Liu ◽  
C. Lamborg

Abstract. The distribution of gaseous elemental mercury (GEM) was determined in the surface atmosphere of the Northern South China Sea (SCS) during 12 SEATS cruises between May 2003 and December 2005. The sampling and analysis of GEM were performed on board ship by using an on-line mercury analyzer (GEMA). Distinct annual patterns were observed for the GEM with a winter maximum of 5.7 ± 0.2 ng m−3 (n = 3) and low in summer (2.8 ± 0.2) (n = 3), with concentrations elevated 2 ∼ 3 times global background values. Source tracking through backward trajectory analysis demonstrated air masses during the northeast monsoon in winter came from Eurasia, bringing continental- and industrial-derived GEM to the SCS. In contrast, during summer southwest monsoon and inter-monsoon, air masses were from the Indochina peninsula and Indian Ocean and West Pacific Ocean. This demonstrates the impact that long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS.


Sign in / Sign up

Export Citation Format

Share Document