Review for “Uncertainties in the national inventory of methane emissions from rice cultivation: field measurements and modeling approaches”

2016 ◽  
Author(s):  
Anonymous
2016 ◽  
Author(s):  
Wen Zhang ◽  
Tingting Li ◽  
Wenjuan Sun

Abstract. Uncertainties in national inventories originate from a variety of sources, including methodological failures, errors and insufficiency of supporting data. In this study, we analyzed these sources and their contribution to uncertainty in the national inventory of rice paddy methane emissions in China and compared the differences in the approaches used (e.g., direct measurements, simple regressions and more complicated models). For the 495 field measurements we collected from the scientific literature, the area-weighted 95 % CI ranged from 13.7 to 1115.4 kg CH4 ha−1, and the histogram distribution of the measurements agreed well with parameterized gamma distributions. For the models, we compared the performance of methods of different complexity (i.e., the CH4MOD model, representing a complicated method, and two less complex statistical regression models) to evaluate the uncertainties associated with model performance as well as the quality and accessibility of the regional datasets. Comparisons revealed that the CH4MOD model performed better than the comparatively simple regression models only when sufficient input data for the model were available, with the regression equations performing better otherwise. As simulated by CH4MOD, methane fluxes varied from 17.2 kg CH4 ha−1 to 708.3 kg CH4 ha−1, covering 63 % of the range of the field measurements. When applying the modeling approach to the 10 km × 10 km gridded dataset of the model input variables, within-grid variations were found to represent 81.2 %–95.5 % of the modeled mean fluxes. Moreover, up-scaling the grid estimates to the national inventory resulted in the models contributing 56.6 % of the total uncertainty, with the remaining 43.4 % being attributed to errors and the scarcity of the spatial datasets of the model inputs. Our analysis reveals the dilemma between model performance and data availability when using a modeling approach: a model with better performance may help in reducing uncertainty caused by model fallacy but increases the uncertainty caused by data scarcity, as greater levels of input are needed to improve performance. Reducing the total uncertainty in the national methane inventory depends both on a better understanding of the complexity of the mechanisms of methane emission and the spatial correlations of the factors that influence methane emissions from rice paddies.


2017 ◽  
Vol 14 (1) ◽  
pp. 163-176 ◽  
Author(s):  
Wen Zhang ◽  
Wenjuan Sun ◽  
Tingting Li

Abstract. Uncertainties in national inventories originate from a variety of sources, including methodological failures, errors, and insufficiency of supporting data. In this study, we analyzed these sources and their contribution to uncertainty in the national inventory of rice paddy methane emissions in China and compared the differences in the approaches used (e.g., direct measurements, simple regressions, and more complicated models). For the 495 field measurements we collected from the scientific literature, the area-weighted 95 % CI (confidence interval) ranged from 13.7 to 1115.4 kg CH4 ha−1, and the histogram distribution of the measurements agreed well with parameterized gamma distributions. For the models, we compared the performance of methods of different complexity (i.e., the CH4MOD model, representing a complicated method, and two less complex statistical regression models taken from literature) to evaluate the uncertainties associated with model performance as well as the quality and accessibility of the regional datasets. Comparisons revealed that the CH4MOD model may perform worse than the comparatively simple regression models when no sufficient input data for the model is available. As simulated by CH4MOD with data of irrigation, organic matter incorporation, and soil properties of rice paddies, the modeling methane fluxes varied from 17.2 to 708.3 kg CH4 ha−1, covering 63 % of the range of the field measurements. When applying the modeling approach to the 10 km  ×  10 km gridded dataset of the model input variables, the within-grid variations, made via the Monte Carlo method, were found to be 81.2–95.5 % of the grid means. Upscaling the grid estimates to the national inventory, the total methane emission from the rice paddies was 6.43 (3.79–9.77) Tg. The fallacy of CH4MOD contributed 56.6 % of the total uncertainty, with the remaining 43.4 % being attributed to errors and the scarcity of the spatial datasets of the model inputs. Our analysis reveals the dilemma between model performance and data availability when using a modeling approach: a model with better performance may help in reducing uncertainty caused by model fallacy but increases the uncertainty caused by data scarcity since greater levels of input are needed to improve performance. Reducing the total uncertainty in the national methane inventory depends on a better understanding of both the complexity of the mechanisms of methane emission and the spatial correlations of the factors that influence methane emissions from rice paddies.


2022 ◽  
Vol 137 ◽  
pp. 294-303
Author(s):  
Torsten Reinelt ◽  
Bernadette K. McCabe ◽  
Andrew Hill ◽  
Peter Harris ◽  
Craig Baillie ◽  
...  

2021 ◽  
Vol 21 (23) ◽  
pp. 18101-18121
Author(s):  
Sabour Baray ◽  
Daniel J. Jacob ◽  
Joannes D. Maasakkers ◽  
Jian-Xiong Sheng ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic emissions are estimated to be 4.1 Tg a−1 from 2010–2015 in the National Inventory Report submitted to the United Nation's Framework Convention on Climate Change (UNFCCC). Natural emissions, which are mostly due to boreal wetlands, are the largest methane source in Canada and highly uncertain, on the order of ∼ 20 Tg a−1 in biosphere process models. Aircraft studies over the last several years have provided “snapshot” emissions that conflict with inventory estimates. Here we use surface data from the Environment and Climate Change Canada (ECCC) in situ network and space-borne data from the Greenhouse Gases Observing Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural methane emissions in Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate anthropogenic emissions comparable to the National Inventory and wetlands emissions using an ensemble of WetCHARTS v1.0 scenarios in addition to other minor natural sources. We conduct a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 Tg a−1 for total anthropogenic and 11.6 ± 1.2 Tg a−1 for total natural emissions. These results agree with our posterior emissions of 6.5 ± 0.7 Tg a−1 for total anthropogenic and 11.7 ± 1.2 Tg a−1 for total natural emissions using GOSAT data. The seasonal pattern of posterior natural emissions using either dataset shows slower to start emissions in the spring and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We combine ECCC and GOSAT data to characterize limitations towards sectoral and provincial-level inversions. We estimate energy + agriculture emissions to be 5.1 ± 1.0 Tg a−1, which is 59 % higher than the national inventory. We attribute 39 % higher anthropogenic emissions to Western Canada than the prior. Natural emissions are lower across Canada. Inversion results are verified against independent aircraft data and surface data, which show better agreement with posterior emissions. This study shows a readjustment of the Canadian methane budget is necessary to better match atmospheric observations with lower natural emissions partially offset by higher anthropogenic emissions.


2011 ◽  
Vol 17 (12) ◽  
pp. 3511-3523 ◽  
Author(s):  
Wen Zhang ◽  
Yongqiang Yu ◽  
Yao Huang ◽  
Tingting Li ◽  
Ping Wang

2014 ◽  
Vol 54 (12) ◽  
pp. 1980 ◽  
Author(s):  
L. A. González ◽  
E. Charmley ◽  
B. K. Henry

The objective of the present study was to develop a model-data fusion approach using remotely collected liveweight (LW) data from individual animals (weighing station placed at the water trough) and evaluate the potential for these data from frequent weighing to increase the accuracy of estimates of methane emissions from beef cattle grazing tropical pastures. Remotely collected LW data were used to calculate daily LW change (LWC), i.e. growth rate on a daily basis, and then to predict feed intake throughout a 342-day grazing period. Feed intake and diet dry matter digestibility (DMD) from faecal near-infrared spectroscopy analysis were used to predict methane emissions using methods for both tropical and temperate cattle as used in the Australian national inventory (Commonwealth of Australia 2014). The remote weighing system captured both short- and long-term environmental (e.g. dry and wet season, and rainfall events) and management effects on LW changes, which were then reflected in estimated feed intake and methane emissions. Large variations in all variables, measured and predicted, were found both across animals and throughout the year. Methane predictions using the official national inventory model for tropical cattle resulted in 20% higher emissions than those for temperate cattle. Predicted methane emissions based on a simulation using only initial and final LW and assuming a linear change in LW between these two points were 7.5% and 5.8% lower than those using daily information on LW from the remote weighing stations for tropical and temperate cattle, respectively. Methane emissions and feed intake can be predicted from remotely collected LW data in near real-time on a daily basis to account for short- and long-term variations in forage quality and intake. This approach has the potential to provide accurate estimates of methane emissions at the individual animal level, making the approach suitable for grazing livestock enterprises wishing to participate in carbon markets and accounting schemes.


2012 ◽  
Vol 414-415 ◽  
pp. 329-340 ◽  
Author(s):  
Mara Baudena ◽  
Ivan Bevilacqua ◽  
Davide Canone ◽  
Stefano Ferraris ◽  
Maurizio Previati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document