Agronomic aspects of wetland rice cultivation and associated methane emissions

1991 ◽  
Vol 15 (2) ◽  
Author(s):  
A.F. Bouwman
2012 ◽  
Vol 9 (3) ◽  
pp. 1237-1251 ◽  
Author(s):  
C. Mueller-Niggemann ◽  
A. Bannert ◽  
M. Schloter ◽  
E. Lehndorff ◽  
L. Schwark

Abstract. In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10% to 20%), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40%) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation restricted was conducted. Observations cannot be extrapolated to global scale but with coastal paddy fields developed on marine tidal flat substrates after land reclamation in the Zhejiang Province represent a small fraction (<1%) of the total rice cropping area. The evolutionary trend showed that the biogeochemical signatures characteristic for paddy soils were fully developed in less than 300 yr since onset of wetland rice cultivation. A six-fold increase of topsoil TOC suggests a substantial gain in CO2 sequestration potential when marine tidal wetland substrate developed to 2000 yr old paddy soil.


2011 ◽  
Vol 17 (12) ◽  
pp. 3511-3523 ◽  
Author(s):  
Wen Zhang ◽  
Yongqiang Yu ◽  
Yao Huang ◽  
Tingting Li ◽  
Ping Wang

Author(s):  
Alexander N. Hristov

Agriculture is a significant source of methane, contributing about 12% of the global anthropogenic methane emissions. Major sources of methane from agricultural activities are fermentation in the reticulo-rumen of ruminant animals (i.e., enteric methane), fermentation in animal manure, and rice cultivation. Enteric methane is the largest agricultural source of methane and is mainly controlled by feed dry matter intake and composition of the animal diet (i.e., fiber, starch, lipids). Processes that lead to generation of methane from animal manure are similar to those taking place in the reticulo-rumen. Methane emissions from manure, however, are greatly influenced by factors such as manure management system and ambient temperature. Systems that handle manure as a liquid generate much more methane than systems in which manure is handled as a solid. Low ambient temperatures drastically decrease methane emissions from manure. Once applied to soil, animal manure does not generate significant amounts of methane. Globally, methane emissions from rice cultivation represent about 10% of the total agricultural greenhouse gas emissions. In the rice plant, methane dissolves in the soil water surrounding the roots, diffuses into the cell-wall water of the root cells, and is eventually released through the micropores in the leaves. Various strategies have been explored to mitigate agricultural methane emissions. Animal nutrition, including balancing dietary nutrients and replacement of fiber with starch or lipids; alternative sinks for hydrogen; manipulation of ruminal fermentation; and direct inhibition of methanogenesis have been shown to effectively decrease enteric methane emissions. Manure management solutions include solid-liquid separation, manure covers, flaring of generated methane, acidification and cooling of manure, and decreasing manure storage time before soil application. There are also effective mitigation strategies for rice that can be categorized broadly into selection of rice cultivars, water regime, and fertilization. Alternate wetting and drying and mid-season drainage of rice paddies have been shown to be very effective practices for mitigating methane emissions from rice production.


2015 ◽  
Vol 22 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Ai Leon ◽  
Kazunori Kohyama ◽  
Kazuyuki Yagi ◽  
Yusuke Takata ◽  
Hiroshi Obara

mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zachary Liechty ◽  
Christian Santos-Medellín ◽  
Joseph Edwards ◽  
Bao Nguyen ◽  
David Mikhail ◽  
...  

ABSTRACT Rice cultivation worldwide accounts for ∼7 to 17% of global methane emissions. Methane cycling in rice paddies is a microbial process not only involving methane producers (methanogens) and methane metabolizers (methanotrophs) but also other microbial taxa that affect upstream processes related to methane metabolism. Rice cultivars vary in their rates of methane emissions, but the influence of rice genotypes on methane cycling microbiota has been poorly characterized. Here, we profiled the rhizosphere, rhizoplane, and endosphere microbiomes of a high-methane-emitting cultivar (Sabine) and a low-methane-emitting cultivar (CLXL745) throughout the growing season to identify variations in the archaeal and bacterial communities relating to methane emissions. The rhizosphere of the high-emitting cultivar was enriched in methanogens compared to that in the low emitter, whereas the relative abundances of methanotrophs between the cultivars were not significantly different. Further analysis of cultivar-sensitive taxa identified families enriched in the high emitter that are associated with methanogenesis-related processes. The high emitter had greater relative abundances of sulfate-reducing and iron-reducing taxa which peak earlier in the season than methanogens and are necessary to lower soil oxidation reduction potential before methanogenesis can occur. The high emitter also had a greater abundance of fermentative taxa which produce methanogenesis precursors (acetate, CO2, and H2). Furthermore, the high emitter was enriched in taxa related to acetogenesis which compete with methanogens for CO2 and H2. These taxa were enriched in a spatio-specific manner and reveal a complex network of microbial interactions on which plant genotype-dependent factors can act to affect methanogenesis and methane emissions. IMPORTANCE Rice cultivation is a major source of anthropogenic emissions of methane, a greenhouse gas with a potentially severe impact on climate change. Emission variation between rice cultivars suggests the feasibility of breeding low-emission rice, but there is a limited understanding of how genotypes affect the microbiota involved in methane cycling. Here, we show that the root microbiome of the high-emitting cultivar is enriched both in methanogens and in taxa associated with fermentation, iron, and sulfate reduction and acetogenesis, processes that support methanogenesis. Understanding how cultivars affect microbes with methanogenesis-related functions is vital for understanding the genetic basis for methane emission in rice and can aid in the development of breeding programs that reduce the environmental impact of rice cultivation.


Sign in / Sign up

Export Citation Format

Share Document