scholarly journals Remote Sensing of <i>Trichodesmium</i> spp. mats in the Western Tropical South Pacific

Author(s):  
Guillaume Rousset ◽  
Florian De Boissieu ◽  
Christophe E. Menkes ◽  
Jérôme Lefèvre ◽  
Robert Frouin ◽  
...  

Abstract. Trichodesmium is the main nitrogen-fixing species in the South Pacific region, a hotspot for diazotrophy. Due to the paucity of in situ observations, methods for detecting Trichodesmium presence on a large scale have been investigated to assess the regional-to-global impact of these species on primary production and carbon cycling. A number of satellite-derived algorithms have been developed to identify Trichodesmium surface blooms, but determining with confidence their accuracy has been difficult, chiefly because of the scarcity of sea-truth information at time of satellite overpass. Here, we use a series of new cruises as well as airborne observational surveys in the South Pacific to quantify statistically the ability of these algorithms to discern correctly Trichodesmium surface blooms in the satellite imagery. The evaluation, performed on MODIS data at 250 m and 1 km resolution acquired over the South West Pacific, shows limitations due to spatial resolution, clouds, and atmospheric correction. A new satellite-based algorithm is designed to alleviate some of these limitations, by exploiting optimally spectral features in the atmospherically corrected reflectance at 531, 645, 678, 748, and 869 nm. This algorithm outperforms former ones near clouds, limiting false positive detection, and allowing regional scale automation. Compared with observations, 80 % of the detected mats are within a 2 km range, demonstrating the good statistical skill of the new algorithm. Application to MODIS imagery acquired during the February–March 2015 OUTPACE campaign reveals the presence of surface blooms Northwest and East of New Caledonia and near 20° S–172° W in qualitative agreement with measured nitrogen fixation rates. The new algorithm, however, fails to detect sub-surface booms evidenced in trichome counts. Improving Trichodesmium detection requires measuring ocean color at higher spectral and spatial (

2018 ◽  
Vol 15 (16) ◽  
pp. 5203-5219 ◽  
Author(s):  
Guillaume Rousset ◽  
Florian De Boissieu ◽  
Christophe E. Menkes ◽  
Jérôme Lefèvre ◽  
Robert Frouin ◽  
...  

Abstract. Trichodesmium is the major nitrogen-fixing species in the western tropical South Pacific (WTSP) region, a hot spot of diazotrophy. Due to the paucity of in situ observations, remote-sensing methods for detecting Trichodesmium presence on a large scale have been investigated to assess the regional-to-global impact of this organism on primary production and carbon cycling. A number of algorithms have been developed to identify Trichodesmium surface blooms from space, but determining with confidence their accuracy has been difficult, chiefly because of the scarcity of sea-truth information at the time of satellite overpass. Here, we use a series of new cruises as well as airborne surveys over the WTSP to evaluate their ability to detect Trichodesmium surface blooms in the satellite imagery. The evaluation, performed on MODIS data at 250 m and 1 km resolution acquired over the region, shows limitations due to spatial resolution, clouds, and atmospheric correction. A new satellite-based algorithm is designed to alleviate some of these limitations, by exploiting optimally spectral features in the atmospherically corrected reflectance at 531, 645, 678, 748, and 869 nm. This algorithm outperforms former ones near clouds, limiting false positive detection and allowing regional-scale automation. Compared with observations, 80 % of the detected mats are within a 2 km range, demonstrating the good statistical skill of the new algorithm. Application to MODIS imagery acquired during the February-March 2015 OUTPACE campaign reveals the presence of surface blooms northwest and east of New Caledonia and near 20∘ S–172∘ W in qualitative agreement with measured nitrogen fixation rates. Improving Trichodesmium detection requires measuring ocean color at higher spectral and spatial (<250 m) resolution than MODIS, taking into account environment properties (e.g., wind, sea surface temperature), fluorescence, and spatial structure of filaments, and a better understanding of Trichodesmium dynamics, including aggregation processes to generate surface mats. Such sub-mesoscale aggregation processes for Trichodesmium are yet to be understood.


2011 ◽  
Vol 24 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Nicolas C. Jourdain ◽  
Patrick Marchesiello ◽  
Christophe E. Menkes ◽  
Jérome Lefèvre ◽  
Emmanuel M. Vincent ◽  
...  

Abstract The Weather Research and Forecast model at ⅓° resolution is used to simulate the statistics of tropical cyclone (TC) activity in the present climate of the South Pacific. In addition to the large-scale conditions, the model is shown to reproduce a wide range of mesoscale convective systems. Tropical cyclones grow from the most intense of these systems formed along the South Pacific convergence zone (SPCZ) and sometimes develop into hurricanes. The three-dimensional structure of simulated tropical cyclones is in excellent agreement with dropsondes and satellite observations. The mean seasonal and spatial distributions of TC genesis and occurrence are also in good agreement with the Joint Typhoon Warning Center (JTWC) data. It is noted, however, that the spatial pattern of TC activity is shifted to the northeast because of a similar bias in the environmental forcing. Over the whole genesis area, 8.2 ± 3.5 cyclones are produced seasonally in the model, compared with 6.6 ± 3.0 in the JTWC data. Part of the interannual variability is associated with El Niño–Southern Oscillation (ENSO). ENSO-driven displacement of the SPCZ position produces a dipole pattern of correlation and results in a weaker correlation when the opposing correlations of the dipole are amalgamated over the entire South Pacific region. As a result, environmentally forced variability at the regional scale is relatively weak, that is, of comparable order to stochastic variability (±1.7 cyclones yr−1), which is estimated from a 10-yr climatological simulation. Stochastic variability appears essentially related to mesoscale interactions, which also affect TC tracks and the resulting occurrence.


2011 ◽  
Vol 8 (12) ◽  
pp. 3631-3647 ◽  
Author(s):  
C. Dupouy ◽  
D. Benielli-Gary ◽  
J. Neveux ◽  
Y. Dandonneau ◽  
T. K. Westberry

Abstract. Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SP). Here, a novel algorithm (TRICHOdesmium SATellite) based on radiance anomaly spectra (RAS) observed in SeaWiFS imagery, is used to detect Trichodesmium during the austral summertime in the SP (5° S–25° S 160° E–170° W). Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra (e.g. slope, intercept, curvature). The fraction of valid (non-cloudy) pixels identified as Trichodesmium surface blooms in the region is low (between 0.01 and 0.2 %), but is about 100 times higher than deduced from previous algorithms. At daily scales in the SP, this fraction represents a total ocean surface area varying from 16 to 48 km2 in Winter and from 200 to 1000 km2 in Summer (and at monthly scale, from 500 to 1000 km2 in Winter and from 3100 to 10 890 km2 in Summer with a maximum of 26 432 km2 in January 1999). The daily distribution of Trichodesmium surface accumulations in the SP detected by TRICHOSAT is presented for the period 1998–2010 which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations in the Melanesian archipelago around New Caledonia, Vanuatu and Fiji Islands for the same period.


2016 ◽  
Vol 548 ◽  
pp. 263-275 ◽  
Author(s):  
RE Lindsay ◽  
R Constantine ◽  
J Robbins ◽  
DK Mattila ◽  
A Tagarino ◽  
...  

2011 ◽  
Vol 8 (3) ◽  
pp. 5653-5689 ◽  
Author(s):  
C. Dupouy ◽  
D. Benielli-Gary ◽  
J. Neveux ◽  
Y. Dandonneau ◽  
T. K. Westberry

Abstract. Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SWTP). Here, a novel approach based on radiance anomaly spectra (RAS) observed in SeaWiFS imagery is used to detect Trichodesmium during the austral summertime in the SWTP. Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra quantitative parameters (e.g. slope, intercept, curvature). The fraction of valid pixels identified as Trichodesmium surface blooms in the region 5° S–25° S 160° E–190° E is low (between 0.01 and 0.2 %), but is about 100 times higher than suggested by previous algorithms. This represents a total surface area which varies from 1500 to 20 000 km2. A monthly distribution of Trichodesmium surface accumulations in the SWTP is presented which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations for the period 1998–2010.


2020 ◽  
Author(s):  
Kayvan Etebari ◽  
James Hereward ◽  
Apenisa Sailo ◽  
Emeline M Ahoafi ◽  
Robert Tautua ◽  
...  

Incursions of the Coconut rhinoceros beetle (CRB), Oryctes rhinoceros, have been detected in several countries of the south-west Pacific in recent years, resulting in an expansion of the pest's geographic range. It has been suggested that this resurgence is related to an O. rhinoceros mitochondrial lineage (previously referred to as the CRB-G biotype) that is reported to show reduced susceptibility to the well-established classical biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). We investigated O. rhinoceros population genetics and the OrNV status of adult specimens collected in the Philippines and seven different South Pacific island countries (Fiji, New Caledonia, Papua New Guinea (PNG), Samoa, Solomon Islands, Tonga, and Vanuatu). Based on the presence of single nucleotide polymorphisms (snps) in the mitochondrial Cytochrome C Oxidase subunit I (CoxI) gene, we found three major mitochondrial lineages (CRB-G, a PNG lineage (CRB-PNG) and the South Pacific lineage (CRB-S)) across the region. Haplotype diversity varied considerably between and within countries. The O. rhinoceros population in most countries was monotypic and all individuals tested belonged to a single mitochondrial lineage (Fiji, CRB-S; Tonga, CRB-S; Vanuatu, CRB-PNG; PNG (Kimbe), CRB-PNG; New Caledonia CRB-G; Philippines, CRB-G). However, in Samoa we detected CRB-S and CRB-PNG and in Solomon Islands we detected all three haplotype groups. Genotyping-by-Sequencing (GBS) methods were used to genotype 10,000 snps from 230 insects across the Pacific and showed genetic differentiation in the O. rhinoceros nuclear genome among different geographical populations. The GBS data also provided evidence for gene flow and admixture between different haplotypes in Solomon Islands. Therefore, contrary to earlier reports, CRB-G is not solely responsible for damage to the coconut palms reported since the pest was first recorded in Solomon Islands in 2015. We also PCR-screened a fragment of OrNV from 260 insects and detected an extremely high prevalence of viral infection in all three haplotypes in the region. We conclude that the haplotype groups CRB-G, CRB-S, and PNG, do not represent biotypes, subspecies, or cryptic species, but simply represent different invasions of O. rhinoceros across the Pacific. This has important implications for management, especially biological control, of Coconut rhinoceros beetle in the region.


2021 ◽  
Author(s):  
Weijie Sun ◽  
James Slavin ◽  
Anna Milillo ◽  
Ryan Dewey ◽  
Stefano Orsini ◽  
...  

Abstract At Mercury, several processes can release ions and neutrals out of the planet’s surface. Here we present enhancements of dayside planetary ions in the solar wind entry layer during flux transfer event (FTE) “showers” near Mercury’s northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e. planetward) toward the cusps, which sputter upward-moving planetary ions within 1 minute. The precipitation rate is enhanced by an order of magnitude during FTE showers and the neutral density of the exosphere can vary by >10% due to this FTE-driven sputtering. These in situ observations of enhanced planetary ions in the entry layer likely correspond to an escape channel of Mercury’s planetary ions, and the large-scale variations of the exosphere observed on minute-timescales by ground-based telescopes. Comprehensive, future multi-point measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury’s dynamic exosphere and magnetosphere.


Author(s):  
Rui Li ◽  
Kejian Wu ◽  
Jingkai Li ◽  
Shaila Akhter ◽  
Xianghui Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document