scholarly journals Calcification and distribution of extant coccolithophores across the Drake Passage during late austral summer 2016

2019 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Karl-Heinz Baumann ◽  
Miguel Ángel Fuertes ◽  
Hartmut Schulz ◽  
Yann Marcon ◽  
...  

Abstract. Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities, however field observations regarding their biogeographic distribution are scarce for the Southern Ocean. This study documents the latitudinal variability in the coccolithophore assemblage composition and the coccolith mass variation of the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April, 2016). A minimum of 200 coccospheres per sample were classified in scanning electron microscope and coccolith mass was estimated with light microscopy, using the C-Calcita software. We find that coccolithophore abundance and diversity decrease southwards marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103cells/L and types B/C, C, O are dominant. (3) The Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succesion from type A to type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographical data is needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.

2019 ◽  
Vol 16 (19) ◽  
pp. 3679-3702 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Karl-Heinz Baumann ◽  
Miguel Ángel Fuertes ◽  
Hartmut Schulz ◽  
Yann Marcon ◽  
...  

Abstract. Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities; however field observations regarding their biogeographic distribution are scarce for the Southern Ocean (SO). This study documents the latitudinal, as well as in depth, variability in the coccolithophore assemblage composition and the coccolith mass variation in the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April 2016). A minimum of 200 coccospheres per sample were identified in the scanning electron microscope, and coccolith mass was estimated with light microscopy. We find that coccolithophore abundance, diversity and maximum depth habitat decrease southwards, marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103 cells L−1 and types B/C, C and O are dominant; and (3) the Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succession from the type A to the type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, the bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographic data are needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.


2015 ◽  
Vol 12 (11) ◽  
pp. 8429-8465 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. A. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.


2013 ◽  
Vol 6 (2) ◽  
pp. 621-639
Author(s):  
U. Schuster ◽  
A. J. Watson ◽  
D. C. E. Bakker ◽  
A. M. de Boer ◽  
E. M. Jones ◽  
...  

Abstract. Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes the dissolved inorganic carbon and total alkalinity data collected along east-west sections at 55–60° N (Arctic Gateway), 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, yet are not covered in this paper. Over 95% of samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a 1st level quality control addressing technical and analytical issues. Samples taken during Arctic Gateway were analysed and subjected to quality control back in the laboratory. Complete post-cruise 2nd level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data are available through the Carbon Dioxide Information Analysis Center (CDIAC) and are included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2).


2015 ◽  
Vol 12 (23) ◽  
pp. 6881-6896 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high-resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (Ω Ca) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.


2014 ◽  
Vol 6 (1) ◽  
pp. 175-183 ◽  
Author(s):  
U. Schuster ◽  
A. J. Watson ◽  
D. C. E. Bakker ◽  
A. M. de Boer ◽  
E. M. Jones ◽  
...  

Abstract. Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes in detail the dissolved inorganic carbon and total alkalinity data collected along east–west sections at 47° N to 60° N, 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, and relevant standard operating procedures are mentioned here. Over 95% of dissolved inorganic carbon and total alkalinity samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a first-level quality control addressing technical and analytical issues. Samples taken along 47° N to 60° N were analysed and subjected to quality control back in the laboratory. Complete post-cruise second-level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data were submitted to the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Carbon Dioxide Information Analysis Center (CDIAC) and and will be included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2), the upcoming update of Key et al. (2004).


2020 ◽  
Vol 8 (12) ◽  
pp. 1980
Author(s):  
Sonia Blanco-Ameijeiras ◽  
Damien J. E. Cabanes ◽  
Rachel N. Cable ◽  
Scarlett Trimborn ◽  
Stéphan Jacquet ◽  
...  

Organic ligands such as exopolymeric substances (EPS) are known to form complexes with iron (Fe) and modulate phytoplankton growth. However, the effect of organic ligands on bacterial and viral communities remains largely unknown. Here, we assessed how Fe associated with organic ligands influences phytoplankton, microbial, and viral abundances and their diversity in the Southern Ocean. While the particulate organic carbon (POC) was modulated by Fe chemistry and bioavailability in the Drake Passage, the abundance and diversity of microbes and viruses were not governed by Fe bioavailability. Only following amendments with bacterial EPS did bacterial abundances increase, while phenotypic alpha diversity of bacterial and viral communities decreased. The latter was accompanied by significantly enhanced POC, pointing toward the relief of C limitation or other drivers of the microbial loop. Based on the literature and our findings, we propose a conceptual framework by which EPS may affect phytoplankton, bacteria, and viruses. Given the importance of the Southern Ocean for Earth’s climate as well as the prevalence of viruses and their increasingly recognized impact on marine biogeochemistry and C cycling; the role of microbe–virus interactions on primary productivity in the Southern Ocean needs urgent attention.


2021 ◽  
Author(s):  
Nele Manon Vollmar ◽  
Karl-Heinz Baumann ◽  
Mariem Saavedra-Pellitero ◽  
Iván Hernández-Almeida

Abstract. The Southern Ocean is experiencing rapid and profound changes in its physical and biogeochemical properties that may influence the distribution and composition of pelagic plankton communities. Coccolithophores are the most prolific carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. However, knowledge is scarce about the record of (sub-)fossil coccolith assemblages in the Southern Ocean, which are constituting invaluable indicators for paleoenvironmental reconstructions. This study investigates coccolith assemblages preserved in surface sediments of southernmost Chile and across the Drake Passage that were retrieved during R/V Polarstern Expedition PS97. We focused on the coccolith response to steep environmental gradients across the frontal system of the Antarctic Circumpolar Current and to hydrodynamic and post-depositional processes occurring in this region. We used statistical analyses to explore which environmental parameters influenced the coccolith assemblages by means of Cluster and Redundancy Analyses. We specifically assessed the morphological diversity of the dominant taxa, i.e. Emiliania huxleyi, emphasizing biogeographical variability of morphotypes, coccolith sizes and calcite carbonate mass estimations. High coccolith abundances and species diversity compared to studies in the same area and in other sectors of the Southern Ocean occur, with a high species richness especially south of the Polar Front. While the surface sediments offshore Chile and north of the Polar Front provide suitable material to reconstruct overlying surface ocean conditions, further factors such as temporary thriving coccolithophore communities in the surface waters or transport of settling coccoliths via surface and bottom currents and eddies are influencing the (sub-)fossil coccolith assemblages south of the Polar Front. Additionally, deeper samples in the southern part of the study area are particularly affected by selective carbonate dissolution. We identified five E. huxleyi morphotypes (A, A overcalcified, R, B/C and O), and estimated coccolith carbonate masses on the basis of scanning electron microscope images. E. huxleyi morphologies reflect diverging biogeographical distributions, trending towards smaller and lighter coccoliths to the south and emphasizing the importance of documenting those morphologies in relation to changing environmental conditions to assess their response to projected environmental change in the SO.


Sign in / Sign up

Export Citation Format

Share Document