scholarly journals Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia

2019 ◽  
Author(s):  
Jonathan R. Moore ◽  
Arthur P. K. Argles ◽  
Kai Zhu ◽  
Chris Huntingford ◽  
Peter M. Cox

Abstract. Understanding the relative abundance of trees of different sizes is an important part of predicting the response of forests to changes in climate, land-use and disturbance events. Two competing theories of forest size-distributions are demographic equilibrium theory (DET), based on scaling of mortality and growth with size, and metabolic scaling theory (MST), based scaling size with metabolic rates and how trees fill space. Recently, it was shown that for US forests DET is a much better model than MST, even using the same growth scaling with size. Studies comparing DET and MST have so far focused on trunk diameter, but tree mass and the associated forest mass per unit area (biomass density) are much more relevant to climate. In this study, we extend by fitting both DET and MST to mass data for the Amazon rainforest. The conversion via allometry from trunk diameter data to mass leads to an artefact in the mass distribution, which can be corrected by excluding smaller trees. We derive equations to calculate the total forest biomass density from the mass distribution equation, for both models, and these can be used as an indicator of goodness of model fit to the data. The models were fitted to the data, using Maximum Likelihood Estimation, at the forest plot, regional and continental scale. The fits for both diameter and mass demonstrate that MST is rarely a good fit for Amazon size-distributions and that DET is much better and can estimate biomass density, at the forest plot scale, with a mean error of 6 % (10 % if DET allometry fixed to MST) of its true value, compared to 139 % for MST. The median of the fitted growth scaling power for all the 124 plots is very close to the MST allometry values, implying MST allometry is a mean scaling, around which smaller forest plots cluster. At the larger regional scale, the error in the biomass density estimate of DET reduces to 2 % or less and it is less than 1 % for the whole continent. This suggests that models based on DET, such as the relatively simple Robust Ecosystem Demography model (RED), are a good basis for a next-generation dynamic global vegetation model, and that Amazonian forests remain close to demographic equilibrium on large-scales, despite climate change and significant anthropogenic disturbance.

2020 ◽  
Vol 17 (4) ◽  
pp. 1013-1032 ◽  
Author(s):  
Jonathan R. Moore ◽  
Arthur P. K. Argles ◽  
Kai Zhu ◽  
Chris Huntingford ◽  
Peter M. Cox

Abstract. Predicting the response of forests to climate and land-use change depends on models that can simulate the time-varying distribution of different tree sizes within a forest – so-called forest demography models. A necessary condition for such models to be trustworthy is that they can reproduce the tree-size distributions that are observed within existing forests worldwide. In a previous study, we showed that demographic equilibrium theory (DET) is able to fit tree-diameter distributions for forests across North America, using a single site-specific fitting parameter (μ) which represents the ratio of the rate of mortality to growth for a tree of a reference size. We use a form of DET that assumes tree-size profiles are in a steady state resulting from the balance between a size-independent rate of tree mortality and tree growth rates that vary as a power law of tree size (as measured by either trunk diameter or biomass). In this study, we test DET against ForestPlots data for 124 sites across Amazonia, fitting, using maximum likelihood estimation, to both directly measured trunk diameter data and also biomass estimates derived from published allometric relationships. Again, we find that DET fits the observed tree-size distributions well, with best-fit values of the exponent relating growth rate to tree mass giving a mean of ϕ=0.71 (0.31 for trunk diameter). This finding is broadly consistent with exponents of ϕ=0.75 (ϕ=1/3 for trunk diameter) predicted by metabolic scaling theory (MST) allometry. The fitted ϕ and μ parameters also show a clear relationship that is suggestive of life-history trade-offs. When we fix to the MST value of ϕ=0.75, we find that best-fit values of μ cluster around 0.25 for trunk diameter, which is similar to the best-fit value we found for North America of 0.22. This suggests an as yet unexplained preferred ratio of mortality to growth across forests of very different types and locations.


AGROFOR ◽  
2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Aleksandr ROMANOV ◽  
Victoria BUTORINA

Sometimes there are situations when it is necessary to determine the size of cutlogs in the logging area in its absence. Mostly such situations arise in the detectionof illegal logging. They can also occur in the case legal harvesting, when the tenantof a forest plot does not receive the scheduled volumes of timber for which he paidthe money. In this case, the diameters of the felled trees are determined by the treestumps. Recalculation of diameters is carried out on special tables developed in theearly 20th century. Studies conducted in Krasnoyarsk, Khabarovsk, Bryansk(Russia), Gomel (Belarus), showed the need to refine the data of scaling tables forlocal conditions. Large discrepancies between actual and tabular trees appear withthe increasing diameter of the tree. Studies of the relation of the formation of thebutt log of pine (Pinus sylvestris L.) in the Perm region was carried out in 2015-2016. Forest plots were selected in different forest types of the middle taiga(Nirobskii forestry) and southern taiga (Perm urban forestry). Measurement of treeswas carried out in pure pine stands at the age of 75-130 years. The stand density ofthe plantings was of 0.6-0.8. In each forest type the replication of studies wasthreefold. Studies have shown that trunks of pines formed a fuller bole in the Permregion, than the established scaling tables. For trees 40cm in diameter,recalculation leads to underestimation of the pine tree trunk diameter by 1-2diameter class. That is understating the actual volume of felled tree by (16-20 %).There were no significant differences in the formation of the pine bole between theforest zones or by the corresponding types of forest. Also, there were no significantdifferences between forest types, which allows using a single conversion scale forthe taiga part of the Perm Territory. Due to the fact that the relative completenessof the comparative stands were close, the influence of the distance between thetrees on the development of the butt of pine trunks was not detected.


1961 ◽  
Vol 34 (2) ◽  
pp. 433-445 ◽  
Author(s):  
E. Schmidt ◽  
P. H. Biddison

Abstract Knowledge of mass distribution of particle sizes in latex is very important to the latex technologist. Therefore, it is desirable to have available a simple method for the determination of mass distribution of particle sizes. This paper presents a method, based on fractional creaming of latex with sodium alginate, which can be used in any laboratory without special equipment. The method is particularly advantageous for analyzing latexes of very wide particle size distributions. When analyzed with an electron microscope, these latexes require counting a very large number of particles. McGavack found that partial creaming of normal hevea latex with ammonium alginate gives concentrates of larger average particle size than the original latex. He found that the average particle size in the cream approaches that of the original latex as the amount of creaming agent is increased. In a previous paper from this laboratory, Schmidt and Kelsey demonstrated that the phenomenon of fractionation according to particle size with increasing amounts of creaming agent is applicable in a wide variety of anionic latex systems and in colloidal silica. Their results indicated also the existence of a quantitative relationship, independent of the nature of the dispersed particles, between the concentration of creaming agent and size of creamed particles. Maron confirmed fractionation with respect to particle size as a consequence of partial creaming with alginate. He showed that the mass average particle sizes of fractions, determined optically, cumulate to that of the original latex. Although the previous paper by Schmidt and Kelsey implied the basic concept of a method of determining particle size distribution by fractional creaming, it was not exploited at that time. In order to adapt the fractional creaming phenomenon to a quantitative method for particle size determination, we required a more precise knowledge of the relation between creaming agent concentration and size of particles creamed. It was proposed to establish this relationship with the aid of the electron microscope. Various factors influencing the creaming of latex, such as polymer concentration, electrolyte, soap content, and variability of the creaming agent, had to be considered in standardizing the creaming procedure.


2019 ◽  
Vol 11 (2) ◽  
pp. 120 ◽  
Author(s):  
Gonca Okay Ahi ◽  
Shuanggen Jin

Water is arguably our most precious resource, which is related to the hydrological cycle, climate change, regional drought events, and water resource management. In Turkey, besides traditional hydrological studies, Terrestrial Water Storage (TWS) is poorly investigated at a continental scale, with limited and sparse observations. Moreover, TWS is a key parameter for studying drought events through the analysis of its variation. In this paper, TWS variation, and thus drought analysis, spatial mass distribution, long-term mass change, and impact on TWS variation from the parameter scale (e.g., precipitation, rainfall rate, evapotranspiration, soil moisture) to the climatic change perspective are investigated. GRACE (Gravity Recovery and Climate Experiment) Level 3 (Release05-RL05) monthly land mass data of the Centre for Space Research (CSR) processing center covering the period from April 2002 to January 2016, Global Land Data Assimilation System (GLDAS: Mosaic (MOS), NOAH, Variable Infiltration Capacity (VIC)), and Tropical Rainfall Measuring Mission (TRMM-3B43) models and drought indices such as self-calibrating Palmer Drought Severity (SCPDSI), El Niño–Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO) are used for this purpose. Turkey experienced serious drought events interpreted with a significant decrease in the TWS signal during the studied time period. GRACE can help to better predict the possible drought nine months before in terms of a decreasing trend compared to previous studies, which do not take satellite gravity data into account. Moreover, the GRACE signal is more sensitive to agricultural and hydrological drought compared to meteorological drought. Precipitation is an important parameter affecting the spatial pattern of the mass distribution and also the spatial change by inducing an acceleration signal from the eastern side to the western side. In Turkey, the La Nina effect probably has an important role in the meteorological drought turning into agricultural and hydrological drought.


2010 ◽  
Vol 86 (4) ◽  
pp. 879-889 ◽  
Author(s):  
Kevin M. Boswell ◽  
R. J. David Wells ◽  
James H. Cowan, Jr. ◽  
Charles A. Wilson

Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Sign in / Sign up

Export Citation Format

Share Document