scholarly journals Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia

2020 ◽  
Vol 17 (4) ◽  
pp. 1013-1032 ◽  
Author(s):  
Jonathan R. Moore ◽  
Arthur P. K. Argles ◽  
Kai Zhu ◽  
Chris Huntingford ◽  
Peter M. Cox

Abstract. Predicting the response of forests to climate and land-use change depends on models that can simulate the time-varying distribution of different tree sizes within a forest – so-called forest demography models. A necessary condition for such models to be trustworthy is that they can reproduce the tree-size distributions that are observed within existing forests worldwide. In a previous study, we showed that demographic equilibrium theory (DET) is able to fit tree-diameter distributions for forests across North America, using a single site-specific fitting parameter (μ) which represents the ratio of the rate of mortality to growth for a tree of a reference size. We use a form of DET that assumes tree-size profiles are in a steady state resulting from the balance between a size-independent rate of tree mortality and tree growth rates that vary as a power law of tree size (as measured by either trunk diameter or biomass). In this study, we test DET against ForestPlots data for 124 sites across Amazonia, fitting, using maximum likelihood estimation, to both directly measured trunk diameter data and also biomass estimates derived from published allometric relationships. Again, we find that DET fits the observed tree-size distributions well, with best-fit values of the exponent relating growth rate to tree mass giving a mean of ϕ=0.71 (0.31 for trunk diameter). This finding is broadly consistent with exponents of ϕ=0.75 (ϕ=1/3 for trunk diameter) predicted by metabolic scaling theory (MST) allometry. The fitted ϕ and μ parameters also show a clear relationship that is suggestive of life-history trade-offs. When we fix to the MST value of ϕ=0.75, we find that best-fit values of μ cluster around 0.25 for trunk diameter, which is similar to the best-fit value we found for North America of 0.22. This suggests an as yet unexplained preferred ratio of mortality to growth across forests of very different types and locations.

2019 ◽  
Author(s):  
Jonathan R. Moore ◽  
Arthur P. K. Argles ◽  
Kai Zhu ◽  
Chris Huntingford ◽  
Peter M. Cox

Abstract. Understanding the relative abundance of trees of different sizes is an important part of predicting the response of forests to changes in climate, land-use and disturbance events. Two competing theories of forest size-distributions are demographic equilibrium theory (DET), based on scaling of mortality and growth with size, and metabolic scaling theory (MST), based scaling size with metabolic rates and how trees fill space. Recently, it was shown that for US forests DET is a much better model than MST, even using the same growth scaling with size. Studies comparing DET and MST have so far focused on trunk diameter, but tree mass and the associated forest mass per unit area (biomass density) are much more relevant to climate. In this study, we extend by fitting both DET and MST to mass data for the Amazon rainforest. The conversion via allometry from trunk diameter data to mass leads to an artefact in the mass distribution, which can be corrected by excluding smaller trees. We derive equations to calculate the total forest biomass density from the mass distribution equation, for both models, and these can be used as an indicator of goodness of model fit to the data. The models were fitted to the data, using Maximum Likelihood Estimation, at the forest plot, regional and continental scale. The fits for both diameter and mass demonstrate that MST is rarely a good fit for Amazon size-distributions and that DET is much better and can estimate biomass density, at the forest plot scale, with a mean error of 6 % (10 % if DET allometry fixed to MST) of its true value, compared to 139 % for MST. The median of the fitted growth scaling power for all the 124 plots is very close to the MST allometry values, implying MST allometry is a mean scaling, around which smaller forest plots cluster. At the larger regional scale, the error in the biomass density estimate of DET reduces to 2 % or less and it is less than 1 % for the whole continent. This suggests that models based on DET, such as the relatively simple Robust Ecosystem Demography model (RED), are a good basis for a next-generation dynamic global vegetation model, and that Amazonian forests remain close to demographic equilibrium on large-scales, despite climate change and significant anthropogenic disturbance.


2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
R. J. W. Brienen ◽  
L. Caldwell ◽  
L. Duchesne ◽  
S. Voelker ◽  
J. Barichivich ◽  
...  

Abstract Land vegetation is currently taking up large amounts of atmospheric CO2, possibly due to tree growth stimulation. Extant models predict that this growth stimulation will continue to cause a net carbon uptake this century. However, there are indications that increased growth rates may shorten trees′ lifespan and thus recent increases in forest carbon stocks may be transient due to lagged increases in mortality. Here we show that growth-lifespan trade-offs are indeed near universal, occurring across almost all species and climates. This trade-off is directly linked to faster growth reducing tree lifespan, and not due to covariance with climate or environment. Thus, current tree growth stimulation will, inevitably, result in a lagged increase in canopy tree mortality, as is indeed widely observed, and eventually neutralise carbon gains due to growth stimulation. Results from a strongly data-based forest simulator confirm these expectations. Extant Earth system model projections of global forest carbon sink persistence are likely too optimistic, increasing the need to curb greenhouse gas emissions.


2016 ◽  
Vol 283 (1823) ◽  
pp. 20152404 ◽  
Author(s):  
Jorge Velázquez ◽  
Robert B. Allen ◽  
David A. Coomes ◽  
Markus P. Eichhorn

Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts.


Crustaceana ◽  
2017 ◽  
Vol 90 (4) ◽  
pp. 417-435 ◽  
Author(s):  
R. J. Houghton ◽  
C. Wood ◽  
X. Lambin

The role of cannibalism in crayfish populations is not well understood, despite being a potentially key density-dependent process underpinning population dynamics. We studied the incidence of cannibalism in an introduced signal crayfish Pacifastacus leniusculus population in a Scottish lowland river in September 2014. Animals were sampled using six different sampling techniques simultaneously, revealing variable densities and size distributions across the site. Cannibalism prevalence was estimated by analysing the gut contents of crayfish >20 mm CL for the presence of crayfish fragments, which was found to be 20% of dissected individuals. When seeking evidence of relationships between the sizes of cannibals and ‘prey’, the density of conspecifics <56% the size of a dissected individual yielded the best fit. The relationship between cannibalism probability and crayfish size and density was equally well described by three different metrics of crayfish density. Cannibalism increased with crayfish size and density but did not vary according to sex. These results suggest that large P. leniusculus frequently cannibalize smaller (prey) conspecifics, and that the probability of cannibalism is dependent upon the relative size of cannibal-to-prey and the density of the smaller crayfish. We suggest that removing large individuals, as targeted by many traditional removal techniques, may lead to reduced cannibalism and therefore a compensatory increase in juvenile survival.


2016 ◽  
Vol 77 (4) ◽  
pp. 352-357
Author(s):  
Dominik Kulakowski

Abstract Forests in Europe and North America are being affected by large and severe outbreaks of bark beetles, which have caused widespread concern about forest health and have led to proposals for tree removal in affected or susceptible forests. Any such intervention, as well as broader decisions of whether any active interventions are appropriate, should be based on the best scientific data. This is true for all forests, including those whose purposes include timber production, watershed protection, biogeochemical function and recreation, and especially protected and conservation areas as the latter often provide particularly unique and important cultural, social, scientific and other ecosystem services. Here, I summarize peer-reviewed literature on the effects of bark beetle outbreaks and on silvicultural treatments aimed at mitigating beetle-induced tree mortality. From an objective scientific perspective, beetle outbreaks do not destroy forests. Instead, in many cases they play an important role in promoting wildlife, biodiversity and other ecological services. The best available data indicate that logging in conservation areas is unlikely to stop ongoing bark beetle outbreaks and instead may be more ecologically detrimental to the forests than the outbreaks themselves. If the purpose of a forest is timber production, then logging is desirable and can be planned based on appropriate analyses of timber yield and economic profit. However, in areas in which conservation is the determined goal, it is recommended that cutting trees be limited to removing hazards, such as trees that might fall in areas of high human activity in order to limit property damage and personal injury. Based on extensive research in Europe and North America, logging beetle-affected forests is inconsistent with most conservation goals.


Sign in / Sign up

Export Citation Format

Share Document