scholarly journals Supplementary material to "Phytoplankton productivity and rapid trophic transfer to microzooplankton stimulated by turbulent nitrate flux in oligotrophic Kuroshio Current"

Author(s):  
Toru Kobari ◽  
Taiga Honma ◽  
Daisuke Hasegawa ◽  
Naoki Yoshie ◽  
Eisuke Tsutumi ◽  
...  
2019 ◽  
Author(s):  
Toru Kobari ◽  
Taiga Honma ◽  
Daisuke Hasegawa ◽  
Naoki Yoshie ◽  
Eisuke Tsutumi ◽  
...  

Abstract. The Kuroshio Current has been thought to be biologically unproductive due to oligotrophic conditions and low plankton standing stocks. Nevertheless, major foraging fishes are known to grow and recruit around the Kuroshio Current. While mixing and advection supplying nutrients to the euphotic zone are happened by eddies and meanders but limited at the Kuroshio front, there is a risk that survival of vulnerable life stages is encountered under the low food availability. Here we report that phytoplankton productivity is stimulated by turbulent nitrate flux amplified with the Kuroshio Current and rapidly transferred to microzooplankton through their grazing. Oceanographic observations demonstrate that the Kuroshio Current topographically enhances significant turbulent mixing and nitrate influx to the euphotic zone. Gradual nutrient enrichment experiments show growth rates of phytoplankton and microzooplankton communities stimulated within a range of the turbulent nitrate flux. Dilution experiments imply a significant microzooplankton grazing on phytoplankton. We propose that these rapid and systematic trophodynamics enhance invisible biological productivity in the Kuroshio.


2020 ◽  
Vol 63 (2) ◽  
pp. 88-123 ◽  
Author(s):  
Paul Dodsworth ◽  
James S. Eldrett ◽  
Malcolm B. Hart

The lowermost 1.45 m of the Welton Chalk Formation, including the regional sedimentary record of Oceanic Anoxic Event 2 (OAE-2), has been sampled at Melton Ross Quarry in eastern England, UK. The section is investigated for organic geochemistry and stable isotopes for the first time, while a detailed palynological study follows previously published preliminary results. It comprises a condensed interval that spans the Cenomanian–Turonian Stage boundary. A locally preserved, lower ‘anomalous’ succession (Beds I–VII) and a ‘Central Limestone’ (Bed A) are shown to correlate respectively with the pre-Plenus sequence and Plenus Bed at Misburg and Wunstorf in the Lower Saxony Basin (LSB), NW Germany. They are overlain by a succession of variegated marls (Bed B to Bed H), including the Black Band (Beds C–E), that can be correlated across eastern England. Based on a carbon isotope (δ13C) profile and dinoflagellate cyst and acritarch bio-event correlation, Beds B–H appear to be a highly attenuated post-Plenus equivalent of the LSB succession, including part of the ‘Fish Shale’. The δ13C profile shows possible ‘precursor’/‘build-up’ events in the lower succession at Melton Ross, with the main OAE-2 δ13C excursion occurring in the Central Limestone and overlying Beds B–H. The darker coloured marls from the Black Band and Bed G contain 1.43–3.47% total organic carbon (TOC), hydrogen index values of 78–203 mg HC/g TOC and oxygen index values of 15–26 mg CO2/g TOC, indicating type III and type II–III organic matter, of mixed terrigenous and marine algal sources. The corresponding palynological assemblages are dominated by marine dinoflagellate cysts, comprising mainly gonyaulacoid taxa, with subordinate terrigenous miospores, mainly gymnosperm bisaccate pollen, consistent with a distal marine setting. The interbedded lighter-coloured marls contain less than 0.4% TOC and lower proportions of miospores and peridinioid dinoflagellate cysts compared with the darker layers. This is suggestive of moderately raised levels of productivity during deposition of the darker layers, possibly related to greater nutrient availability from land-derived sources. The occurrence of the peridinioid taxa Eurydinium saxoniense and Bosedinia spp., together with higher proportions of prasinophyte phycomata in the darker layers, may also point to stimulation of organic-walled phytoplankton productivity by reduced nitrogen chemo-species encroaching the photic zone, possibly by expansion of an oxygen-minimum zone. Exceptionally high concentrations of palynomorphs (in the tens of thousands to lower hundreds of thousands per gramme range) in the darker layers at Melton Ross and eight other eastern England localities is consistent with increased quality of seafloor preservation in a low oxygen environment, coupled with a high degree of stratigraphic condensation. Two new dinoflagellate cyst species are described from Melton Ross, Canninginopsis? lindseyensis sp. nov. and Trithyrodinium maculatum sp. nov., along with two taxa described in open nomenclature.Supplementary material: One pdf file, with detailed sample positions and descriptions, tables of supporting information (also available in Excel format), quarry photographs and a palynological distribution chart, is available at https://doi.org/10.6084/m9.figshare.c.4987205


2020 ◽  
Vol 17 (9) ◽  
pp. 2441-2452 ◽  
Author(s):  
Toru Kobari ◽  
Taiga Honma ◽  
Daisuke Hasegawa ◽  
Naoki Yoshie ◽  
Eisuke Tsutsumi ◽  
...  

Abstract. The Kuroshio Current has been thought to be biologically unproductive because of its oligotrophic conditions and low plankton standing stocks. Even though vulnerable life stages of major foraging fishes risk being entrapped by frontal eddies and meanders and encountering low food availability, they have life cycle strategies that include growing and recruiting around the Kuroshio Current. Here we report that phytoplankton growth and consumption by microzooplankton are stimulated by turbulent nitrate flux amplified by the Kuroshio Current. Oceanographic observations demonstrate that the Kuroshio Current topographically enhances significant turbulent mixing and nitrate influx to the euphotic zone. Graduated nutrient enrichment experiments show that growth rates of phytoplankton and microheterotroph communities were stimulated within the range of the turbulent nitrate flux. Results of dilution experiments imply significant microzooplankton grazing on phytoplankton. We propose that these rapid and systematic trophodynamics enhance biological productivity in the Kuroshio.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document