scholarly journals Differential effects of redox conditions on the decomposition of litter and soil organic matter

2020 ◽  
Author(s):  
Yang Lin ◽  
Ashley N. Campbell ◽  
Amrita Bhattacharyya ◽  
Nicole DiDonato ◽  
Allison M. Thompson ◽  
...  

Abstract. Soil redox conditions exert substantial influence on biogeochemical processes in terrestrial ecosystems. Humid tropical forest soils are often characterized by fluctuating redox dynamics, yet how these dynamics affect patterns in soil versus litter decomposition and associated CO2 fluxes is not well understood. We used a 13C-labeled litter addition to explicitly follow the decomposition of litter-derived vs. native soil-derived organic matter in response to four different soil redox regimes – static oxic or anoxic, and two oscillating treatments – in soil from the Luquillo Experimental Forest, Puerto Rico. We coupled this incubation experiment with high-resolution mass spectrometry to characterize the preferential decomposition of specific classes of organic molecules. CO2 production from litter and soil organic matter (SOM) showed distinctly different responses to redox manipulation. The cumulative production of SOM-derived CO2 was positively correlated with the length of soil exposure to an oxic headspace (r = 0.89, n = 20), whereas cumulative 13C-litter-derived CO2 production was not linked to oxygen availability. The CO2 production rate from litter was highest under static anoxic conditions in the first half of the incubation period, and later dropped to the lowest among all redox treatments. In the consistently anoxic soils, we observed the depletion of more oxidized water-extractable organic matter (especially amino sugars, carbohydrates, and proteins) over time, suggesting that under anaerobic conditions, microbes preferentially used more oxidized litter-derived compounds during the early stages of decomposition. Results from kinetic modeling showed that more frequent anoxic exposure limited the decomposition of a slow-cycling C pool, but not a fast-cycling pool. Overall, our results demonstrate that substrate source – freshly added litter vs. native organic matter – plays an important role in the redox sensitivity of organic matter decomposition. In soil environments that regularly experience redox fluctuations, anaerobic heterotrophs can be surprisingly effective in degrading fresh plant litter.

2020 ◽  
Author(s):  
Yang Lin ◽  
Ashley N. Campbell ◽  
Amrita Bhattacharyya ◽  
Nicole DiDonato ◽  
Allison M. Thompson ◽  
...  

AbstractSoil redox conditions exert substantial influence on biogeochemical processes in terrestrial ecosystems. Humid tropical forest soils are often characterized by fluctuating redox dynamics, yet how these dynamics affect patterns in soil versus litter decomposition and associated CO2 fluxes is not well understood. We used a 13C-labeled litter addition to explicitly follow the decomposition of litter-derived vs. native soil-derived organic matter in response to four different soil redox regimes—static oxic or anoxic, and two oscillating treatments—in soil from the Luquillo Experimental Forest, Puerto Rico. We coupled this incubation experiment with high-resolution mass spectrometry to characterize the preferential decomposition of specific classes of organic molecules. CO2 production from litter and soil organic matter (SOM) showed distinctly different responses to redox manipulation. The cumulative production of SOM-derived CO2 was positively correlated with the length of soil exposure to an oxic headspace (r = 0.89, n = 20), whereas cumulative 13C-litter-derived CO2 production was not linked to oxygen availability. The CO2 production rate from litter was highest under static anoxic conditions in the first half of the incubation period, and later dropped to the lowest among all redox treatments. In the consistently anoxic soils, we observed the depletion of more oxidized water-extractable organic matter (especially amino sugars, carbohydrates, and proteins) over time, suggesting that under anaerobic conditions, microbes preferentially used more oxidized litter-derived compounds during the early stages of decomposition. Results from kinetic modeling showed that more frequent anoxic exposure limited the decomposition of a slow-cycling C pool, but not a fast-cycling pool. Overall, our results demonstrate that substrate source—freshly added litter vs. native organic matter—plays an important role in the redox sensitivity of organic matter decomposition. In soil environments that regularly experience redox fluctuations, anaerobic heterotrophs can be surprisingly effective in degrading fresh plant litter.


2009 ◽  
Vol 6 (5) ◽  
pp. 9891-9944 ◽  
Author(s):  
Y. P. Wang ◽  
R. M. Law ◽  
B. Pak

Abstract. Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorous (P), in additional to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2526 Gt C, and the C fractions in plant, litter and soil organic matter are 21, 6 and 73%. The total amount of N is 124 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization that has not been included in any other global models previously. The total amount of P is 26 Gt P in the terrestrial biosphere, 17% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 40 Gt P, with 60% in soil organic matter, otherwise. This model was used to derive the global distribution of N or P limitation on the productivity of terrestrial ecosystems. Our model predicts that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.


2010 ◽  
Vol 7 (7) ◽  
pp. 2261-2282 ◽  
Author(s):  
Y. P. Wang ◽  
R. M. Law ◽  
B. Pak

Abstract. Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorus (P), in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil) excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise. This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.


2015 ◽  
Vol 21 (9) ◽  
pp. 3200-3209 ◽  
Author(s):  
Michael J. Castellano ◽  
Kevin E. Mueller ◽  
Daniel C. Olk ◽  
John E. Sawyer ◽  
Johan Six

Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 543 ◽  
Author(s):  
GJ Blair ◽  
AR Till ◽  
C Boswell

The recycling of S from plant litter, dung and urine is an important process for supplying S for pastures. A pot experiment was conducted where 35S-labelled litter (25% white clover/38% ryegrass/21% weed) and S-35-labelled urine and faeces collected from sheep fed the same herbage as was used as litter was surface applied to pots and the fate of the applied S was followed for 100 days with ryegrass as the test plant. In camp soil, 45% of the S applied in urine was taken up by ryegrass plants within 12 days of application. In non-camp soil, the uptake of urine-S was about 20% over the same period. Cumulative uptake of 35S from urine in camp soil was subsequently restricted, with a maximum of 60% eventually measured in plants after 100 days. Mean rates of release of S (0-37 days) from litter and faeces was respectively 16.2 and 4.5 mg g-1 day-1. The calculated half-times from S in the two materials were respectively 43 and 154 days under controlled environmental conditions with adequate moisture. Litter S followed organic matter (OM) decomposition, but faecal S release was initially more rapid than faecal OM decomposition. There was little S release from faeces after day 25. Rather, S was immobilized in faeces during the 25-100 day period. The decomposition of litter and faeces was divided into an initial rapid process during which soluble S and more labile S was released, followed by a slower process involving the release of S from tissues more resistant to mineralization. The uptake of 35S from labelled materials was initially more rapid than would be expected for total S released from the added litter and faeces and the 35Suptake effect was short-lived relative to the continued effect of added material on total S uptake. The preferential uptake of 35S from the surface-applied material appears to be due to limited root development at the early stages of the experiment. Movement of 35S into the soil organic matter pool was very rapid; 58.4% of urine S was in the soil organic matter fraction in the non-camp soil by day 6. The amount of applied S in the organic matter equilibrated at about day 75. The accumulation of applied S from the materials added was greater than that recorded in previously reported studies for inorganic sulfate (e.g. about 50%). Soil P and S status had little effect on rates of release of S. from the applied materials, however, the effect of the camp and non-camp soil on total S recycling was markedly different as a result of the different amounts of plant growth and thus S uptake in the two soils. The decomposition of litter indicated peak rates of S release at two specific times over the 100 days and indicated successional changes in micro-organism activity. With faeces, the experiment was not continued for sufficiently long to show micro-organism effects.


2018 ◽  
Vol 124 ◽  
pp. 81-89 ◽  
Author(s):  
Luis Lopez-Sangil ◽  
Iain P. Hartley ◽  
Pere Rovira ◽  
Pere Casals ◽  
Emma J. Sayer

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shingo Miyauchi ◽  
Enikő Kiss ◽  
Alan Kuo ◽  
Elodie Drula ◽  
Annegret Kohler ◽  
...  

Abstract Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.


2012 ◽  
Vol 9 (10) ◽  
pp. 3721-3727 ◽  
Author(s):  
J. J. Wang ◽  
T. W. Ng ◽  
Q. Zhang ◽  
X. B. Yang ◽  
R. A. Dahlgren ◽  
...  

Abstract. C1/C2 organohalogens (organohalogens with one or two carbon atoms) can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3) dichloro-acetonitrile (CHCl2CN), chloral hydrate (CCl3CH(OH)2) and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.


2018 ◽  
Vol 11 (12) ◽  
pp. 4779-4796 ◽  
Author(s):  
Haicheng Zhang ◽  
Daniel S. Goll ◽  
Stefano Manzoni ◽  
Philippe Ciais ◽  
Bertrand Guenet ◽  
...  

Abstract. Microbial decomposition of plant litter is a crucial process for the land carbon (C) cycle, as it directly controls the partitioning of litter C between CO2 released to the atmosphere versus the formation of new soil organic matter (SOM). Land surface models used to study the C cycle rarely considered flexibility in the decomposer C use efficiency (CUEd) defined by the fraction of decomposed litter C that is retained as SOM (as opposed to be respired). In this study, we adapted a conceptual formulation of CUEd based on assumption that litter decomposers optimally adjust their CUEd as a function of litter substrate C to nitrogen (N) stoichiometry to maximize their growth rates. This formulation was incorporated into the widely used CENTURY soil biogeochemical model and evaluated based on data from laboratory litter incubation experiments. Results indicated that the CENTURY model with new CUEd formulation was able to reproduce differences in respiration rate of litter with contrasting C : N ratios and under different levels of mineral N availability, whereas the default model with fixed CUEd could not. Using the model with flexible CUEd, we also illustrated that litter quality affected the long-term SOM formation. Litter with a small C : N ratio tended to form a larger SOM pool than litter with larger C : N ratios, as it could be more efficiently incorporated into SOM by microorganisms. This study provided a simple but effective formulation to quantify the effect of varying litter quality (N content) on SOM formation across temporal scales. Optimality theory appears to be suitable to predict complex processes of litter decomposition into soil C and to quantify how plant residues and manure can be harnessed to improve soil C sequestration for climate mitigation.


2019 ◽  
Vol 99 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Yu Tan ◽  
Wanqin Yang ◽  
Xiangyin Ni ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

The formation of soil organic matter via humification of plant litter is important for long-term carbon sequestration in forests; however, whether soil fauna affects litter humification is unclear. In this study, we quantified the effects of soil fauna on the optical properties (i.e., ΔlogK and E4/E6) of the alkaline-extracted humic acid-like solutions of four foliar litters by removing soil fauna via litterbags with different mesh sizes in two subtropical evergreen broad-leaved forests. Litterbags were collected at the leaf falling, budding, expanding, maturation, and senescence stages from November 2013 to October 2015 to assess whether the effects of soil fauna on litter humification vary in different plant phenology periods. The results showed that soil fauna significantly reduced the ΔlogK and E4/E6 values in the leaf expanding stage of oak litter and in the leaf falling stage of camphor and fir litters. The richness index of soil fauna explained 21%, 55%, 19%, and 45% of the variations in the E4/E6 values for oak, fir, camphor, and pine litters, respectively. The effects of litter water content on these optical properties were greater than that of temperature. These results indicated that soil fauna plays a key role in litter humification in the leaf expanding and falling stages and are potentially involved in soil carbon sequestration in these subtropical forests.


Sign in / Sign up

Export Citation Format

Share Document