scholarly journals Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian Upwelling System

2021 ◽  
Author(s):  
Tianfei Xue ◽  
Ivy Frenger ◽  
A. E. Friederike Prowe ◽  
Yonss Saranga José ◽  
Andreas Oschlies

Abstract. The Peruvian Upwelling System hosts an extremely high productive marine ecosystem. Observations show that the Peruvian Upwelling System is the only Eastern Boundary Upwelling Systems (EBUS) with an out-of-phase relationship of seasonal surface chlorophyll concentrations and upwelling intensity. This "seasonal paradox" triggers the questions: (1) what is the uniqueness of the Peruvian Upwelling System compared with other EBUS that leads to the out of phase relationship; (2) how does this uniqueness lead to low phytoplankton biomass in austral winter despite strong upwelling and ample nutrients? Using observational climatologies for four EBUS we diagnose that the Peruvian Upwelling System is unique in that intense upwelling coincides with deep mixed layers. We then apply a coupled regional ocean circulation-biogeochemical model (CROCO-BioEBUS) to assess how the interplay between mixed layer and upwelling is regulating the seasonality of surface chlorophyll in the Peruvian Upwelling System. The model recreates the "seasonal paradox" within 200 km off the Peruvian coast. We confirm previous findings that deep mixed layers, which cause vertical dilution and stronger light limitation, mostly drive the diametrical seasonality of chlorophyll relative to upwelling. In contrast to previous studies, reduced phytoplankton growth due to enhanced upwelling of cold waters and lateral advection are second-order drivers of low surface chlorophyll concentrations. This impact of deep mixed layers and upwelling propagates up the ecosystem, from primary production to export efficiency. Our findings emphasize the crucial role of the interplay of the mixed layer and upwelling and suggest that surface chlorophyll may increase along with a weakened seasonal paradox in response to shoaling mixed layers under climate change.

2020 ◽  
Vol 77 (4) ◽  
pp. 1556-1572
Author(s):  
Žarko Kovač ◽  
Trevor Platt ◽  
Shubha Sathyendranath

Abstract We seek to understand, in mathematical terms, the causes of stability in marine phytoplankton biomass. The stability of a simple, mixed-layer-phytoplankton-nutrient model is analysed. Primary production is modelled as a non-linear function of nutrient concentration and light. The steady state of the model system is demonstrated to be stable with a linear relation between steady state biomass and nutrients. The causes of stability are shown to be shading and nutrient limitation. When only light limitation and shading are taken into account, the steady state is a sink node. However, when nutrient limitation is taken into account, without shading, the steady state can be either a sink node or a spiral sink. The transition from a sink node to a spiral sink occurs when normalized mixed layer production becomes larger than the equivalent influx rate of nutrients into the mixed layer, demonstrating that nutrient limitation of production is a necessary, but not a sufficient condition for oscillatory solutions. In both cases, the characteristic return times are derived explicitly. The effect of shading is found to cause the depression of the steady state towards lower biomass than would otherwise be attainable. The influence of mixed-layer depth variation on stability is also analysed.


2008 ◽  
Vol 38 (6) ◽  
pp. 1145-1165 ◽  
Author(s):  
Baylor Fox-Kemper ◽  
Raffaele Ferrari ◽  
Robert Hallberg

Abstract Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.


2008 ◽  
Vol 21 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Hailong Liu

Abstract A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.


2018 ◽  
Vol 15 (5) ◽  
pp. 1395-1414 ◽  
Author(s):  
Saleem Shalin ◽  
Annette Samuelsen ◽  
Anton Korosov ◽  
Nandini Menon ◽  
Björn C. Backeberg ◽  
...  

Abstract. The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50–75∘ E and 15–30∘ N) during the winter months (November–March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.


2017 ◽  
Vol 14 (22) ◽  
pp. 5015-5027 ◽  
Author(s):  
Zuchuan Li ◽  
Nicolas Cassar

Abstract. Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD). In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.


2013 ◽  
Vol 6 (1) ◽  
pp. 17-28 ◽  
Author(s):  
E. Siewertsen ◽  
J. Piwonski ◽  
T. Slawig

Abstract. We have ported an implementation of the spin-up for marine ecosystem models based on transport matrices to graphics processing units (GPUs). The original implementation was designed for distributed-memory architectures and uses the Portable, Extensible Toolkit for Scientific Computation (PETSc) library that is based on the Message Passing Interface (MPI) standard. The spin-up computes a steady seasonal cycle of ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented by matrices. Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the Compute Unified Device Architecture (CUDA) standard, a customized version of PETSc and a commercial CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplar ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can compete with a significant number of cluster CPUs without further code optimization.


2007 ◽  
Vol 4 (6) ◽  
pp. 4411-4441 ◽  
Author(s):  
M. Fujii ◽  
F. Chai

Abstract. Several in situ iron-enrichment experiments have been conducted, where the response of the phytoplankton community differed. We use a marine ecosystem model to investigate the effect of iron on phytoplankton in response to different initial plankton conditions and mixed layer depths. Sensitivity analysis of the model results to the mixed layer depths reveals that the modeled response to the same iron enhancement treatment differed dramatically according to the different mixed layer depth. The magnitude of the iron-induced biogeochemical responses in the surface water, such as maximum chlorophyll, is inversely correlated with the mixed layer depth, as observed. The significant decrease in maximum surface chlorophyll with mixed layer depth results from the difference in diatom concentration in the mixed layer, which is determined by vertical mixing. Sensitivity of the model to initial mesozooplankton (as grazers on diatoms) biomass shows that column-integrated net community production and export production are strongly controlled by the initial mesozooplankton biomass. Higher initial mesozooplankton biomass yields high grazing pressure on diatoms, which results in less accumulation of diatom biomass. The initial diatom biomass is also important to the outcome of iron enrichment but is not as crucial as the mixed layer depth and the initial mesozooplankton biomass. This modeling study suggests not only mixed layer depth but also the initial biomass of diatoms and its principle grazers are crucial factors in the response of the phytoplankton community to the iron enrichments, and should be considered in designing future iron-enrichment experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zengan Deng ◽  
Lian Xie ◽  
Ting Yu ◽  
Suixiang Shi ◽  
Jiye Jin ◽  
...  

Numerical experiments using hybrid coordinate ocean model (HYCOM) are designed to quantify the effects of wind wave-induced Coriolis-Stokes forcing (CSF) on mixed layer (ML) dynamics in a global context. CSF calculated by the wave parameters simulated by using the WaveWatch III (WW3) model is introduced as a new driving force for HYCOM. The results show that noticeable influence on ocean circulation in ML can be caused by CSF. Over most of the global oceans the direction of Stokes transport is different from that of the change in current transport caused by CSF. This is not unusual because CSF is normal to Stokes drift. However, the CSF-caused change in current transport and the wave-induced Stokes transport have the same magnitude. The seasonal variabilities of mixed layer temperature (MLT) and mixed layer depth (MLD) caused by CSF are analyzed, and the possible relationship between them is also given.


2014 ◽  
Vol 72 (6) ◽  
pp. 1897-1907 ◽  
Author(s):  
Peter J. S. Franks

Abstract Sverdrup (1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l'Exploration de la Mer, 18: 287–295) was quite careful in formulating his critical depth hypothesis, specifying a “thoroughly mixed top layer” with mixing “strong enough to distribute the plankton organisms evenly through the layer”. With a few notable exceptions, most subsequent tests of the critical depth hypothesis have ignored those assumptions, using estimates of a hydrographically defined mixed-layer depth as a proxy for the actual turbulence-driven movement of the phytoplankton. However, a closer examination of the sources of turbulence and stratification in turbulent layers shows that active turbulence is highly variable over time scales of hours, vertical scales of metres, and horizontal scales of kilometres. Furthermore, the mixed layer as defined by temperature or density gradients is a poor indicator of the depth or intensity of active turbulence. Without time series of coincident, in situ measurements of turbulence and phytoplankton rates, it is not possible to properly test Sverdrup's critical depth hypothesis.


2016 ◽  
Author(s):  
Sophie Clayton ◽  
Stephanie Dutkiewicz ◽  
Oliver Jahn ◽  
Christopher Hill ◽  
Patrick Heimbach ◽  
...  

Abstract. Regional and idealized modeling studies have shown that increasing the physical resolution of biogeochemical models to include mesoscale and submesoscale dynamics can result in both increases and decreases in phytoplankton biomass and primary production, as well as changes in phytoplankton community structure. Here we present a systematic study of the differences generated by coupling the same ecological-biogeochemical model to a 1°, coarse-resolution, and 1/6°, eddy-permitting, global ocean circulation model. Surprisingly, we find that the modeled phytoplankton community is largely unchanged, with the same phenotypes dominating in both cases. Conversely, there are large regional variations in integrated primary production, phytoplankton and zooplankton biomass. In the subtropics, mixed layer depths are, on average, deeper in the eddy-permitting model, resulting in higher nutrient supply driving increases in primary production and phytoplankton biomass. In the higher latitudes, deeper spring mixed layer depths in the eddy-permitting model result in increased light limitation during the spring bloom. Counter-intuitively, this does not drive a decrease in phytoplankton biomass, but is reflected in decreased primary production and zooplankton biomass. We explain these similarities and differences in the model using the framework of resource competition theory, and find that they are the consequence of changes in the regional and seasonal nutrient supply and light environment, mediated by differences in the modeled mixed layer depths. Although previous work has suggested that complex models may respond chaotically and unpredictably to changes in forcing, we find that our model responds in a predictable way to different ocean circulation forcing, despite its complexity.


Sign in / Sign up

Export Citation Format

Share Document