scholarly journals Oxygen export to the deep ocean following Labrador Sea Water formation

2021 ◽  
Author(s):  
Jannes Koelling ◽  
Dariia Atamanchuk ◽  
Johannes Karstensen ◽  
Patricia Handmann ◽  
Douglas W. R. Wallace

Abstract. The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime convection, which homogenizes the water column to a depth of up to 2000 m, and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a two-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53° N show that LSW is primarily exported in the months following the onset of convection, from March to August. During the rest of the year, properties of the outflow resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 μmol L−1 in January to a maximum of 306 μmol L−1 in April. As a result of this LSW input, 1.57 × 1012 mol year−1 of oxygen are added to the outflowing boundary current, mostly during summer, equivalent to 49 % of the wintertime uptake from the atmosphere in the interior of the basin. The export of oxygen from the subpolar gyre associated with this direct southward pathway of LSW is estimated to supply about 71 % of the oxygen consumed annually in the upper North Atlantic Deep Water layer in the Atlantic Ocean between the equator and 50° N. Our results show that the formation of LSW is important for replenishing oxygen to the deep oceans, meaning that possible changes in its formation rate and ventilation due to climate change could have wide-reaching impacts on marine life.

2018 ◽  
Author(s):  
Manon Tonnard ◽  
Hélène Planquette ◽  
Andrew R. Bowie ◽  
Pier van der Merwe ◽  
Morgane Gallinari ◽  
...  

Abstract. Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles.


2021 ◽  
Author(s):  
Philippe Miron ◽  
Maria J. Olascoaga ◽  
Francisco J. Beron-Vera ◽  
Kimberly L. Drouin ◽  
M. Susan Lozier

<p>The North Atlantic Deep Water (NADW) flows equatorward along the Deep Western Boundary Current (DWBC) as well as interior pathways and is a critical part of the Atlantic Meridional Overturning Circulation. Its upper layer, the Labrador Sea Water (LSW), is formed by open-ocean deep convection in the Labrador and Irminger Seas while its lower layers, the Iceland–Scotland Overflow Water (ISOW) and the Denmark Strait Overflow Water (DSOW), are formed north of the Greenland–Iceland–Scotland Ridge.</p><p>In recent years, more than two hundred acoustically-tracked subsurface floats have been deployed in the deep waters of the North Atlantic.  Studies to date have highlighted water mass pathways from launch locations, but due to limited float trajectory lengths, these studies have been unable to identify pathways connecting  remote regions.</p><p>This work presents a framework to explore deep water pathways from their respective sources in the North Atlantic using Markov Chain (MC) modeling and Transition Path Theory (TPT). Using observational trajectories released as part of OSNAP and the Argo projects, we constructed two MCs that approximate the lower and upper layers of the NADW Lagrangian dynamics. The reactive NADW pathways—directly connecting NADW sources with a target at 53°N—are obtained from these MCs using TPT.</p><p>Preliminary results show that twenty percent more pathways of the upper layer(LSW) reach the ocean interior compared to  the lower layer (ISOW, DSOW), which mostly flows along the DWBC in the subpolar North Atlantic. Also identified are the Labrador Sea recirculation pathways to the Irminger Sea and the direct connections from the Reykjanes Ridge to the eastern flank of the Mid–Atlantic Ridge, both previously observed. Furthermore, we quantified the eastern spread of the LSW to the area surrounding the Charlie–Gibbs Fracture Zone and compared it with previous analysis. Finally, the residence time of the upper and lower layers are assessed and compared to previous observations.</p>


2018 ◽  
Vol 15 (18) ◽  
pp. 5663-5676 ◽  
Author(s):  
Jill N. Sutton ◽  
Gregory F. de Souza ◽  
Maribel I. García-Ibáñez ◽  
Christina L. De La Rocha

Abstract. The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution.


2020 ◽  
Vol 17 (4) ◽  
pp. 917-943 ◽  
Author(s):  
Manon Tonnard ◽  
Hélène Planquette ◽  
Andrew R. Bowie ◽  
Pier van der Merwe ◽  
Morgane Gallinari ◽  
...  

Abstract. Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analyzed using a seaFAST-pico™ coupled to an Element XR sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) and provided interesting insights into the Fe sources in this area. Overall, DFe concentrations ranged from 0.09±0.01 to 7.8±0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland, and Newfoundland margins likely due to riverine inputs from the Tagus River, meteoric water inputs, and sedimentary inputs. Deep winter convection occurring the previous winter provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth and lead to relatively elevated DFe concentrations within subsurface waters of the Irminger Sea. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles in the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers located in the different basins and at the Iberian Margin were found to act as either a source or a sink of DFe depending on the nature of particles, with organic particles likely releasing DFe and Mn particle scavenging DFe.


2021 ◽  
Author(s):  
Ilona Goszczko ◽  
Eleanor Frajka-Williams ◽  
Louis Clement ◽  
N. Penny Holliday

<p>The Labrador Sea’s surface circulation remains important for the large-scale thermohaline circulation due to its fast response to atmospheric forcing and strong links to the North Atlantic and the Arctic Ocean’s counterparts. Its role in redistribution of heat and momentum, as well as for the biochemical exchange with the atmosphere is crucial in several time and space scales. The region is characterised by advection of freshwater originating from the combined melt of the Arctic Ocean’s sea-ice and Greenland’s glaciers around and towards the interior of the Labrador Sea. The fate of surface freshwater is an important factor that modifies ocean stratification, deep water convection and thus, ocean climate. Despite the major role of surface freshwater in the Labrador Sea, the dominant mechanism responsible for its offshore transport remains debatable, whether it is due to wind-induced Ekman transport, particularly strong in winter, or to eddy advection.</p><p>To explore this disagreement, we use surface drifters deployed in three seasons: 50 in December 2019, 50 in March 2020 and 50 in August 2020 in the shelf/slope location off Cape Desolation and near Qaqortoq, a town in the south-west Greenland. The drifters are equipped with temperature sensors and underwater drogues allowing them to follow the cyclonic surface currents: first, the along-shelf, coastal current and along-slope, boundary current west of Greenland; then, if they are able to detach from the shelf edge, the interior circulation of the central Labrador Sea that directs them south-westward from the Davis Strait; eventually, joining the coastal and along-slope boundary currents east of Labrador before circulating into the Labrador Sea’s central basins or eventually leaving the study area.</p><p>To investigate the dominant force responsible for the surface transport we use a wind product (ERA5) in a combination with daily SST (OSTIA). Detachment from boundary current is defined as crossing of the 2500 m isobath. The number of crossings varies depending on the season and weather conditions, e.g. an abrupt change in wind direction. This, in turn, may create upwelling of deep-water masses near the shelf-break. However, trajectories of drifters superimposed on SST maps indicate that besides Ekman transport, eddies carry shelf-originating water offshore as well. Auxiliary data from below (Argo floats and other CTD profiles collected near the drifters) allow to distinguish how deep both processes can leave their signature or whether they can drive a return flow.</p><p>If any substantial changes in the North Atlantic wind field occur in the future, the fate of the surface water transport in the Labrador Sea will also change, both in respect to its volume and direction. This could potentially affect the balance between Ekman transport and eddies revealed by our analysis of surface drifters data.</p>


1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

Sign in / Sign up

Export Citation Format

Share Document