scholarly journals Supplementary material to "N<sub>2</sub> fixation in the Mediterranean Sea related to the composition of the diazotrophic community, and impact of dust under present and future environmental conditions"

Author(s):  
Céline Ridame ◽  
Julie Dinasquet ◽  
Søren Hallstrøm ◽  
Estelle Bigeard ◽  
Lasse Riemann ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4764
Author(s):  
Evangelia Dialyna ◽  
Theocharis Tsoutsos

A detailed review of wave energy resource assessment and the state-of-the-art of deployed wave energy converters (WECs) in real environmental conditions in the Mediterranean Sea have been analysed in this study. The installed power of the several deployed WECs in the Mediterranean Sea varies between 3–2500 kW. Ten project cases of deployed WECs in the basin are presented, with their analysis of the essential features. Five different types of WEC have already been tested under real environmental conditions in Italy, Greece, Israel and Gibraltar, with Italy being the Mediterranean country with the most deployed WECs. The main questions of the relevant studies were the ongoing trends, the examination of WECs in combination with other renewable sources, the utilising of WECs for desalination, and the prospects of wave energy in the Mediterranean islands and ports. This paper is the first comprehensive study that overviews the recent significant developments in the wave energy sector in the Mediterranean countries. The research concludes that the advances of the wave energy sector in the Mediterranean Sea are significant. However, in order to commercialise WECs and wave energy exploitation to become profitable, more development is necessary.


2019 ◽  
Vol 11 (2) ◽  
pp. 110 ◽  
Author(s):  
Malgorzata Stramska ◽  
Paulina Aniskiewicz

Climate related changes can have significant effects on Posidonia oceanica, an endemic seagrass species of the Mediterranean Sea (MEDIT). This seagrass is very important for many aspects of functioning of the sea but there is an increasing number of reports about the ongoing loss of its biomass and area coverage. We analysed multiyear data of the sea surface temperature (SST), sea level anomalies, ocean colour MODIS-A and ERA-Interim reanalysis. The results provide a description of current environmental conditions in the MEDIT and their spatial and temporal variability, including long-term trends. We defined regions where the extent of the P. oceanica meadows may be limited by specific environmental conditions. Light limitation is more severe near the northern and western coasts of the MEDIT, where the vertical diffuse attenuation coefficient is large. In the zone extending from the Gulf of Lion towards the south, significant wave heights reach large values. Wave action may destroy the plants and as a result the shallow water depth limit of P. oceanica meadows is most likely deeper here than in other regions. The highest SST values are documented in the south-eastern part of the Mediterranean Sea. In this area P. oceanica meadows are more endangered by the climate warming than in other regions where SSTs are lower. The absence of P. oceanica meadows in the south-eastern edge of the Mediterranean Sea can be attributed to high temperatures. Our conclusions are partly confirmed by the information about P. oceanica from the literature but more monitoring efforts are needed to fully describe current extent of the meadows and their shifts. Results presented in this paper can help with designing special programs to confirm the role of environmental conditions on the spatial distribution of P. oceanica and their future trends in the Mediterranean Sea.


Sign in / Sign up

Export Citation Format

Share Document