scholarly journals Effect of ocean acidification on the early life stages of the blue mussel <i>Mytilus edulis</i>

2010 ◽  
Vol 7 (7) ◽  
pp. 2051-2060 ◽  
Author(s):  
F. Gazeau ◽  
J.-P. Gattuso ◽  
C. Dawber ◽  
A. E. Pronker ◽  
F. Peene ◽  
...  

Abstract. Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25–0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100–1200 μatm) than at a control pHNBS of ~8.1 (pCO2~460–640 μatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 μatm) than at a control pHNBS of ~8.1 (pCO2~540 μatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.

2010 ◽  
Vol 7 (2) ◽  
pp. 2927-2947 ◽  
Author(s):  
F. Gazeau ◽  
J.-P. Gattuso ◽  
C. Dawber ◽  
A. E. Pronker ◽  
F. Peene ◽  
...  

Abstract. Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels but relatively few studies have focused on early life stages which are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25–0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were, respectively, 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 than at a control pHNBS of ~8.1. Moreover, a decrease of 12.0±5.4% of shell thickness was observed. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due toslight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 than at a control pHNBS of ~8.1. Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, decreases of hatching rates and shell growth suggest a negative impact of ocean acidification on the future survival of bivalve populations potentially leading to significant ecological and economical losses.


2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


2011 ◽  
Vol 62 (7) ◽  
pp. 1437-1445 ◽  
Author(s):  
Thierry Baussant ◽  
Maren Ortiz-Zarragoitia ◽  
Miren P. Cajaraville ◽  
Renée Katrin Bechmann ◽  
Ingrid Christina Taban ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 193 ◽  
Author(s):  
Raz Tamir ◽  
Gal Eyal ◽  
Itay Cohen ◽  
Yossi Loya

The growth in human population along coastal areas is exposing marine environments to increasing anthropogenic light sources. Despite the potential effects of this modern phenomenon, very few studies have examined its implications for corals. Here, we present a long-term study of coral early life stages under light pollution conditions at night. Coral larvae were collected from Stylophora pistillata colonies, and then settled and grown under experimental conditions of two different common city lighting methods (fluorescent or LED). Effects of the artificial lighting on the coral settlement success, survivorship, growth rate, photosynthetic efficiency, and calcification rate were examined over a period of one year. The control exhibited ~30% higher settlement success compared to the two light treatments, while under the light treatments corals showed higher survivorship, growth, and calcification rates. In addition, an indication of damage to the photosynthetic system was found in the light-polluted corals, which was reflected in their photosynthesis efficiency parameters: i.e., lower maximum light utilization coefficient (α), lower maximum potential photosynthetic rate (Pmax), and lower photosynthetic maximal quantum yield (Fv/Fm). Our findings provide evidence of the potential adverse effects of artificial lighting methods on the natural environment of coral reefs. We conclude that the use of the LED lighting method has high interference potential for the early life stages of corals.


2011 ◽  
Vol 74 (7-9) ◽  
pp. 424-438 ◽  
Author(s):  
Renée Katrin Bechmann ◽  
Ingrid Christina Taban ◽  
Stig Westerlund ◽  
Brit Fjone Godal ◽  
Maj Arnberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document