scholarly journals The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004

2010 ◽  
Vol 7 (10) ◽  
pp. 3067-3081 ◽  
Author(s):  
M. González-Dávila ◽  
J. M. Santana-Casiano ◽  
M. J. Rueda ◽  
O. Llinás

Abstract. The accelerated rate of increase in atmospheric carbon dioxide and the substantial fraction of anthropogenic CO2 emissions absorbed by the oceans are affecting the anthropocenic signatures of seawater. Long-term time series are a powerful tool for investigating any change in ocean bio-geochemistry and its effects on the carbon cycle. We have evaluated the ESTOC (European Station for Time series in the Ocean at the Canary islands) observations of measured pH (total scale at 25 °C) and total alkalinity plus computed total dissolved inorganic carbon concentration (CT) from 1995 to 2004 for surface and deep waters, by following all changes in response to increasing atmospheric carbon dioxide. The observed values for the surface partial pressure of CO2 from 1995 to 2008 were also taken into consideration. The data were treated to better understand the fundamental processes controlling vertical distributions in the Eastern North Atlantic Ocean and the accumulation of anthropogenic CO2, CANT. CT at constant salinity, NCT, increased at a rate of 0.85 μmol kg−1 yr−1 in the mixed layer, linked to an fCO2 increase of 1.7±0.7 μatm yr−1 in both the atmosphere and the ocean. Consequently, the mixed layer at ESTOC site has also become more acidic, −0.0017±0.0003 units yr−1, whereas the carbonate ion concentrations and CaCO3 saturation states have also decreased over time. NCT increases at a rate of 0.53, 0.49 and 0.40 μmol kg−1 yr−1 at 300, 600, and 1000 m, respectively. The general processes controlling the vertical variations of alkalinity and the inorganic carbon distribution were computed by considering the pre-formed values, the production/decomposition of organic matter and the formation/dissolution of carbonates. At 3000 m, 30% of the inorganic carbon production is related to the dissolution of calcium carbonate, increasing to 35% at 3685 m. The total column inventory of anthropogenic CO2 for the decade was 66±3 mol m−2. A model fitting indicated that the column inventory of CANT increased from 61.7 mol m−2 in the year 1994 to 70.2 mol m−2 in 2004. The ESTOC site is presented as a reference site to follow CANT changes in the Northeast Atlantic Sub-tropical gyre.

2010 ◽  
Vol 7 (2) ◽  
pp. 1995-2032 ◽  
Author(s):  
M. González-Dávila ◽  
J. M. Santana-Casiano ◽  
M. J. Rueda ◽  
O. Llinás

Abstract. The accelerated rate of increase in the atmospheric carbon dioxide (CO2) and the substantial fraction of anthropogenic CO2 emissions absorbed by the oceans are affecting the anthropocenic properties of seawater. Long-term time series are a powerful tool for investigating any change in ocean bio-geochemistry and its effects on the carbon cycle. We have evaluated the ESTOC (European Station for Time series in the Ocean at the Canary islands) observations of measured pH (total scale at 25 °C) and total alkalinity plus computed total dissolved inorganic carbon CO2 concentration (CT) from 1995 to 2004 for surface and deep waters, by following all changes in response to increasing atmospheric carbon dioxide. The experimental values for the partial surface pressure of CO2 from 1995 to 2008 were also taken into consideration. The data were treated to better understand the fundamental processes controlling vertical distributions in the Eastern North Atlantic Ocean and the accumulation of anthropogenic CO2, CANT. CT at constant salinity, NCT, increased at a rate of 1 μmol kg−1 yr−1 in the first 200 m, linked to an fCO2 increase of 1.7±0.7 μatm yr−1 in both the atmosphere and the ocean. Consequently, the ESTOC site has also become more acidic, −0.0018±0.0003 units yr−1 over the first 100 m, whereas the carbonate ion concentrations and CaCO3 saturation states have also decreased over time. The rate of change is to be observed over the first 1000 m, where at 300, 600, and 1000 m the NCT increases at a rate of 0.69, 0.61 and 0.48 μmol kg−1 yr−1, respectively. The vertical distribution of the carbonate system variables are affected by the water mass structure and, to a different extent, controlled by the production/decomposition of organic matter, the formation/dissolution of carbonates, and differences in their respective pre-formed values. At 3000 m, 30% of the inorganic carbon production is related to the dissolution of calcium carbonate, with a total of 35% at the bottom. The total column inventory of anthropogenic CO2 for the decade was 66±3 mol m−2. A model fitting indicated that the column inventory of CANT increased from 61.7 mol m−2 in the year 1994 to 70.2 mol m−2 in 2004. The ESTOC site is presented by way of a reference site to follow CANT changes in the North Atlantic Sub-tropical gyre.


2009 ◽  
Vol 6 (2) ◽  
pp. 4441-4462 ◽  
Author(s):  
K. G. Schulz ◽  
J. Barcelos e Ramos ◽  
R. E. Zeebe ◽  
U. Riebesell

Abstract. Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3


2005 ◽  
Vol 18 (13) ◽  
pp. 2222-2246 ◽  
Author(s):  
Robert J. Oglesby ◽  
Monica Y. Stephens ◽  
Barry Saltzman

Abstract A coupled mixed layer–atmospheric general circulation model has been used to evaluate the impact of ocean thermocline temperatures (and by proxy those of the deep ocean) on the surface climate of the earth. Particular attention has been devoted to temperature regimes both warmer and cooler than at present. The mixed layer ocean model (MLOM) simulates vertical dynamics and thermodynamics in the upper ocean, including wind mixing and buoyancy effects, and has been coupled to the NCAR Community Climate Model (CCM3). Simulations were made with globally uniform thermocline warmings of +2°, +5°, and +10°C, as well as a globally uniform cooling of −5°C. A simulation was made with latitudinally varying changes in thermocline temperature such that the warming at mid- and high latitudes is much larger than at low latitudes. In all simulations, the response of surface temperature over both land and ocean was larger than that expected just as a result of the imposed thermocline temperature change, largely because of water vapor feedbacks. In this respect, the simulations were similar to those in which only changes in atmospheric carbon dioxide were imposed. In fact, when carbon dioxide was explicitly changed along with thermocline temperatures, the results were not much different than if only the thermocline temperatures were altered. Land versus ocean differences are explained largely by latent heat flux differences: the ocean is an infinite evaporative source, while land can be quite dry. The latitudinally varying case has a much larger response at mid- to high latitudes than at low latitudes; the high latitudes actually appear to effectively warm the low latitudes. Simulations exploring scenarios of glacial inception suggest that the deep ocean alone is not likely to be a key trigger but must operate in conjunction with other forcings, such as reduced carbon dioxide. Moist upland regions at mid- and high latitudes, and land regions adjacent to perennial sea ice, are the preferred locations for glacial inception in these runs. Finally, the model combination equilibrates very rapidly, meaning that a large number of simulations can be made for a fairly modest computational cost. A drawback to this is greatly reduced sensitivity to parameters such as atmospheric carbon dioxide, which requires a full response of the ocean. Thus, this approach can be considered intermediate between fixing, or prescribing, sea surface temperatures and a fully coupled modeling approach.


Author(s):  
Marcelo Friederichs Landim de Souza ◽  
Thaís Bomfim Santana

This study intended to compare physical and chemical variables, net ecosystem metabolism (production – respiration) and calcification-carbonate dissolution rates in two coastal reefs subject to different levels of anthropogenic inputs of nutrients and organic matter. The coast surrounding Coroa Vermelha reef presented a higher degree of urbanization and touristic activities than Taipus de Fora at the time of sampling. The temperature, dissolved inorganic nutrients, total alkalinity, and total suspended solids were significantly higher in Coroa Vermelha reef, probably as a result of the anthropogenic inputs. These variables in Taipus de Fora were comparable to those found in the literature for Recife de Fora, an offshore protected reef and other less impacted reefs.  Total alkalinity, dissolved inorganic carbon and carbon dioxide partial pressure were lower and pH was higher in the reef flat than at the surrounding seawater. There was a prevalence of an influx of atmospheric carbon dioxide to reef water, net autotrophy and calcification. A significant correlation was observed between net calcification and net community metabolism. The benthic photosynthesis in the reef flat during low tide decreases the carbon dioxide partial pressure and increases the aragonite saturation state, establishing thermodynamic conditions that favor calcification.   


2015 ◽  
Vol 17 (2) ◽  
pp. 334-343 ◽  

<p>The carbonate and physicochemical characteristics of the surface microlayer and upper mixed layer of a tropical coastal lagoon were investigated. Data on the physicochemical parameters generally indicated a moderately polluted ecosystem. The influence of the ocean environment over the Lagoon system was evident by elevated salinity levels. The mean total dissolved inorganic carbon (DIC) for the surface microlayer (SML) and subsurface water (SSW) samples were 2626.6 and 2550.9 &micro;mol/kg SW respectively. The dominant inorganic form of DIC in the lagoon water samples was HCO<sub>3</sub><sup>-</sup> with a calculated average abundance &gt;95.4% in the SML and &gt;94% in the SSW. The bicarbonate species derived abundance varied between 1.6% (SML) and 8.4% (SSW), while the aqueous carbon dioxide were generally low in percentages ranging from 0.4 in SSW to 1.5 in SML water samples. In general, the occurrence of the carbonate species was in the order HCO<sub>3</sub><sup>-</sup> &gt; CO<sub>3</sub><sup>2-</sup> &gt; CO<sub>2</sub>. Results showed that total alkalinity (A<sub>T</sub>) was relatively greater than the DIC. Long term monitoring studies in the coastal lagoon systems is needed to understand the coastal water chemistry and pollution status.</p>


Sign in / Sign up

Export Citation Format

Share Document