scholarly journals Comparative studies of pelagic microbial methane oxidation within two anoxic basins of the central Baltic Sea (Gotland Deep and Landsort Deep)

2013 ◽  
Vol 10 (7) ◽  
pp. 12251-12284 ◽  
Author(s):  
G. Jakobs ◽  
G. Rehder ◽  
G. Jost ◽  
K. Kießlich ◽  
M. Labrenz ◽  
...  

Abstract. Pelagic methane oxidation was investigated in dependence on differing environmental conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, LD: 2935 nM) and the surface water (GD and LD < 10 nM), together with a 13C CH4 enrichment (δ13C CH4 deep water: GD −84‰, LD −71‰ ; redox zone: GD −60‰, LD −20‰ ; δ13C CH4 vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption in that specific depth interval. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d–1 and LD: max. 0.61 nM d–1), with a four times higher turnover rate constant (k) in the LD (GD: 0.0022 d–1, LD: 0.0079 d–1). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10–6 m2 s–1 LD: 1.6 × 10–5 m2 s–1). Our study identified vertical transport of methane from the deep water body towards the redox zone as well as differing hydrographic conditions within the oxic/anoxic transition zone of these deeps as major factors that determine the pelagic methane oxidation.

2013 ◽  
Vol 10 (12) ◽  
pp. 7863-7875 ◽  
Author(s):  
G. Jakobs ◽  
G. Rehder ◽  
G. Jost ◽  
K. Kießlich ◽  
M. Labrenz ◽  
...  

Abstract. Pelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, 223 m; LD: 2935 nM, 422 m) and the surface water (GD and LD < 10 nM). This gradient together with a 13C CH4 enrichment (δ13C CH4 deep water: GD −84‰, LD −71‰; redox zone: GD −60‰, LD −20‰; surface water: GD −47‰, LD −50‰; δ13C CH4 vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption within the redox zone. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d−1, LD: max. 0.61 nM d−1), with a nearly four-times-lower turnover time of methane in the LD (GD: 455 d, LD: 127 d). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10–6 m2 s−1, LD: 1.6 × 10–5 m2 s−1). Our study identified vertical transport of methane from the deep-water body towards the redox zone as well as differing hydrographic conditions (lateral intrusions and vertical mixing) within the redox zone of these deeps as major factors that determine the pelagic methane oxidation.


2012 ◽  
Vol 9 (12) ◽  
pp. 4969-4977 ◽  
Author(s):  
O. Schmale ◽  
M. Blumenberg ◽  
K. Kießlich ◽  
G. Jakobs ◽  
C. Berndmeyer ◽  
...  

Abstract. Water column samples taken in summer 2008 from the stratified Gotland Deep (central Baltic Sea) showed a strong gradient in dissolved methane concentrations from high values in the saline deep water (max. 504 nM) to low concentrations in the less dense, brackish surface water (about 4 nM). The steep methane-gradient (between 115 and 135 m water depth) within the redox-zone, which separates the anoxic deep part from the oxygenated surface water (oxygen concentration 0–0.8 mL L−1), implies a methane consumption rate of 0.28 nM d−1. The process of microbial methane oxidation within this zone was evident by a shift of the stable carbon isotope ratio of methane between the bottom water (δ13C CH4 = −82.4‰ and the redox-zone (δ13C CH4 = −38.7‰. Water column samples between 80 and 119 m were studied to identify the microorganisms responsible for the methane turnover in that depth interval. Notably, methane monooxygenase gene expression analyses for water depths covering the whole redox-zone demonstrated that accordant methanotrophic activity was probably due to only one phylotype of the aerobic type I methanotrophic bacteria. An imprint of these organisms on the particular organic matter was revealed by distinctive lipid biomarkers showing bacteriohopanepolyols and lipid fatty acids characteristic for aerobic type I methanotrophs (e.g., 35-aminobacteriohopane-30,31,32,33,34-pentol), corroborating their role in aerobic methane oxidation in the redox-zone of the central Baltic Sea.


2012 ◽  
Vol 9 (7) ◽  
pp. 8783-8805 ◽  
Author(s):  
O. Schmale ◽  
M. Blumenberg ◽  
K. Kießlich ◽  
G. Jakobs ◽  
C. Berndmeyer ◽  
...  

Abstract. Methane concentrations in the stratified water column of the Gotland Deep (Central Baltic Sea) show a strong gradient from high values in the saline deep water (max. 504nM) to low concentrations in the less dense, brackish surface water (about 4 nM). The steepest gradient is present within the redoxcline (between 115 and 135 m water depth) that separates the anoxic deep part from the oxygenated surface water, implying a methane consumption rate of 0.28 nM d−1. The process of microbial methane oxidation within the redoxcline is mirrored by a shift of the stable carbon isotope ratio of methane between the bottom water (δ13C CH4 = −82.4‰) and the suboxic depth interval (δ13C CH4 = −38.7‰). A water column sample from 100 m water depth was studied to identify the microorganisms responsible for the methane turnover at the redoxcline. Notably, methane monoxygenase gene expression analyses for the specific water depth demonstrated that accordant methanotrophic activity was due to only one microbial phylotype. An imprint of these organisms on the particular organic matter was revealed by distinctive lipid biomarkers showing bacteriohopanepolyols and lipid fatty acids characteristic for aerobic type I methanotrophic bacteria (e.g. 35-aminobacteriohopane-30,31,32,33,34-pentol). In conjunction with earlier findings, our results support the idea that biogeochemical cycles in Central Baltic Sea redoxclines are mainly driven by only a few microbial key species.


2013 ◽  
Vol 10 (4) ◽  
pp. 6461-6491 ◽  
Author(s):  
S. Mau ◽  
J. Blees ◽  
E. Helmke ◽  
H. Niemann ◽  
E. Damm

Abstract. The bacterially mediated aerobic methane oxidation (MOx) is a key mechanism in controlling methane (CH4) emissions from the world's oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Spitsbergen) by applying a combination of radio-tracer based incubation assays (3H-CH4 and 14H-CH4), stable C-CH4 isotope measurements, and molecular tools (16S rRNA DGGE-fingerprinting, pmoA- and mxaF gene analyses). Strofjorden is stratified in the summertime with melt water (MW) in the upper 60 m of the water column, Arctic water (ArW) between 60–100 m and brine-enriched shelf water (BSW) down to 140 m. CH4 concentrations were supersaturated with respect to the atmospheric equilibrium (∼3 nM) throughout the water column, increasing from ∼20 nM at the surface to a maximum of 72 nM at 60 m and decreasing below. MOx rate measurements at near in situ CH4 concentrations (here measured with 3H-CH4 raising the ambient CH4 pool by <2 nM) showed a similar trend: low rates at the sea surface increasing to a maximum of ∼2.3 nM d−1 at 60 m followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with 14H-CH4 at elevated CH4 concentrations (incubations were spiked with ∼450 nM of 14H-CH4, providing an estimate of the CH4 oxidation potential) showed comparably low turnover rates (<1 nMd−1) at 60 m, but peaked in ArW/BSW at ∼100 m water depth, concomitant with increasing 14C-values in the residual CH4 pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH4 concentrations. In contrast, the activity of the deep water MOx community is relatively low at the ambient, summertime CH4 concentrations but has the potential to increase rapidly in response to CH4 availability. A similar distinction between surface and deep water MOx is also suggested by our molecular analyses. Although, we found pmoA and maxF gene sequences throughout the water column attesting the ubiquitous presence of MOx communities in Storfjorden, deep water amplicons of pmoA and maxF were unusually long. Also a DGGE band related to the known Type I MOx Mehtylosphera was observed in deep BWS, but absent in surface MW. Apparently, different MOx communities have developed in the stratified water masses in Storfjorden, which is possibly related to the spatiotemporal variability in CH4 supply to the distinct water masses.


2017 ◽  
Author(s):  
Jakob Walve ◽  
Maria Sandberg ◽  
Ulf Larsson ◽  
Christer Lännergren

Abstract. Internal phosphorus (P) loading from sediments, controlled by hypoxia, is often assumed to hamper the recovery of lakes and coastal areas from eutrophic conditions. We use a box-model to calculate seasonal and annual inputs, export, retention and internal cycling of P in the inner archipelago of Stockholm, Sweden (Baltic Sea) in 1968–2015. The area receives freshwater from Lake Mälaren and treated sewage from the greater Stockholm area. The sewage treatment plants (STPs) have improved their nutrient removal in steps, starting with P in 1972 and nitrogen in 1996. In the first 10–20 years after the main P load reduction in 1972–76, the model shows, in comparison to the load, a small negative annual P balance, probably due to release from legacy sediment P stores. The now stabilized, near neutral P balance indicates no continued internal loading from legacy P, but P retention is low, despite improved oxygen conditions. Seasonally, sediments are a P sink in spring and a P source in summer and autumn. Most of the deep-water P release from sediments in summer-autumn appears to be derived from the settled spring bloom and is exported during winter. Oxygen consumption and P release in the deep water are generally tightly coupled, indicating limited control by P binding to iron-oxyhydroxides under oxic conditions. However, in years of deep-water hypoxia enhanced P release suggest contribution from redox-sensitive P stores. The oxygen conditions in the area have generally improved, probably due both to lower sedimentation of organic matter from the 1970s and lower STP ammonium loads from the late 1990s. Increased oxygen inputs to the intermediate and deep waters due to weakened stratification and enhanced vertical mixing have probably also contributed, while increased respiration rates due to elevated bottom water temperatures probably explain worsened oxygen conditions during the 1990s. Since the P turnover time is short and legacy P minute, measures to bind P in Stockholm inner archipelago sediments would primarily accumulate P imported from the Baltic Sea and from Lake Mälaren inflow, and management here should focus on reducing external nutrient inputs.


2013 ◽  
Vol 10 (10) ◽  
pp. 6267-6278 ◽  
Author(s):  
S. Mau ◽  
J. Blees ◽  
E. Helmke ◽  
H. Niemann ◽  
E. Damm

Abstract. The bacterially mediated aerobic methane oxidation (MOx) is a key mechanism in controlling methane (CH4) emissions from the world's oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Svalbard) by applying a combination of radio-tracer-based incubation assays (3H-CH4 and 14C-CH4), stable C-CH4 isotope measurements, and molecular tools (16S rRNA gene Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, pmoA- and mxaF gene analyses). Storfjorden is stratified in the summertime with melt water (MW) in the upper 60 m of the water column, Arctic water (ArW) between 60 and 100 m, and brine-enriched shelf water (BSW) down to 140 m. CH4 concentrations were supersaturated with respect to the atmospheric equilibrium (about 3–4 nM) throughout the water column, increasing from ∼20 nM at the surface to a maximum of 72 nM at 60 m and decreasing below. MOx rate measurements at near in situ CH4 concentrations (here measured with 3H-CH4 raising the ambient CH4 pool by <2 nM) showed a similar trend: low rates at the sea surface, increasing to a maximum of ∼2.3 nM day−1 at 60 m, followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with 14C-CH4 (incubations were spiked with ∼450 nM of 14C-CH4, providing an estimate of the CH4 oxidation at elevated concentration) showed comparably low turnover rates (<1 nM day−1) at 60 m, and peak rates were found in ArW/BSW at ∼100 m water depth, concomitant with increasing 13C values in the residual CH4 pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH4 concentrations. In contrast, the activity of the deep-water MOx community is relatively low at the ambient, summertime CH4 concentrations but has the potential to increase rapidly in response to CH4 availability. A similar distinction between surface and deep-water MOx is also suggested by our molecular analyses. The DGGE banding patterns of 16S rRNA gene fragments of the surface MW and deep water were clearly different. A DGGE band related to the known type I MOx bacterium Methylosphaera was observed in deep BWS, but absent in surface MW. Furthermore, the Polymerase Chain Reaction (PCR) amplicons of the deep water with the two functional primers sets pmoA and mxaF showed, in contrast to those of the surface MW, additional products besides the expected one of 530 base pairs (bp). Apparently, different MOx communities have developed in the stratified water masses in Storfjorden, which is possibly related to the spatiotemporal variability in CH4 supply to the distinct water masses.


2013 ◽  
Vol 10 (4) ◽  
pp. 2725-2735 ◽  
Author(s):  
M. Blumenberg ◽  
C. Berndmeyer ◽  
M. Moros ◽  
M. Muschalla ◽  
O. Schmale ◽  
...  

Abstract. The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea) was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs), lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep) and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer), methanotrophic bacteria (35-aminobacteriohopanetetrol), cyanobacteria (bacteriohopanetetrol cyclitol ether isomer) and from soil bacteria (adenosylhopane) through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyano)bacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.


Sign in / Sign up

Export Citation Format

Share Document