scholarly journals Observed small spatial scale and seasonal variability of the CO<sub>2</sub>-system in the Southern Ocean

2013 ◽  
Vol 10 (8) ◽  
pp. 13855-13895 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at seasonal time scale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and DIC at seasonal and small-spatial scales is examined using a dataset of surface drifters including ~ 80 000 measurements at high spatio-temporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μ atm for pCO2 and 2 to 30 μ mol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with SST satellite images and local DIC/SST relationships derived from drifters observations. We find that dynamical processes drives the variability of DIC at small spatial scale in most regions of the Southern Ocean, the cascade of large-scale gradients down to small spatial scales leading to gradients up to 15 μ mol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μ mol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifters observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean, which could be used to validate models simulations. We find that small spatial scales structures are a non negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, inter-annual variability, decadal trends) of the carbon budget from low resolution observations and models.

2014 ◽  
Vol 11 (1) ◽  
pp. 75-90 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for pCO2 and 2 to 30 μmol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models.


2019 ◽  
Vol 99 (06) ◽  
pp. 1309-1315
Author(s):  
Edson A. Vieira ◽  
Marília Bueno

AbstractMany studies have already assessed how wave action may affect morphology of intertidal species among sites that vary in wave exposure, but few attempted to look to this issue in smaller scales. Using the most common limpet of the Brazilian coast, Lottia subrugosa, and assuming position on rocky boulders as a proxy for wave action at small scale, we tested the hypothesis that waves may also influence limpet morphology at a smaller spatial scale by investigating how individual size, foot area and shell shape vary between sheltered and exposed boulder sides on three shores in the coast of Ubatuba, Brazil. Limpets consistently showed a proportionally larger foot on exposed boulder sides for all shores, indicating that stronger attachment is an important mechanism to deal with wave action dislodgement at a smaller scale. Shell shape also varied in the scale investigated here, with more conical (dissipative) shells occurring in exposed boulder sides in one exposed shore across time and in the other exposed shore in one year. Shell shape did not vary regarding boulder sides across time in the most sheltered shore. Although we did not assess large spatial scale effects of wave action in this study, variations of the effect of waves at small spatial scale observed for shell shape suggest that it may be modulated by the local wave exposure regime. Our work highlights the importance of wave action at small spatial scales, and may help to understand the ecological variability of limpets inhabiting rocky shores.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2020 ◽  
Author(s):  
Nadezda V. Yagova ◽  
Vyacheslav Pilipenko ◽  
Yaroslav Sakharov ◽  
Vasily Selivanov

Abstract Geomagnetically induced currents (GICs) in a meridional power transmission line on the Kola Peninsula are analyzed during the intervals of Pc5/Pi3 (frequency range from 1.5 to 5 mHz) pulsations recorded at the IMAGE magnetometer network. We have analyzed GIC in a transformer at the terminal station Vykhodnoj (68 N, 33 E) during the entire year of 2015, near the maximum of 24-th Solar cycle. To quantify the efficiency of GIC generation by geomagnetic pulsations, a ratio between power spectral densities of GIC and magnetic field variations is introduced. Upon examination of the geomagnetic pulsation efficiency in GIC generation, the emphasis is given to its dependence on frequency and spatial scale. To estimate pulsation spatial scales in latitudinal and longitudinal directions, the triangle of stations KEV-SOD-KIL has been used. Large-scale pulsations (with a high spectral coherence, low phase difference, and similar amplitudes at latitudinally separated stations) are found to be more effective in GIC generation than small-scale pulsations. The GIC response also depends on the pulsation scale across the electric power line.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2020 ◽  
Author(s):  
Nadezda V. Yagova ◽  
Vyacheslav Pilipenko ◽  
Yaroslav Sakharov ◽  
Vasily Selivanov

Abstract Geomagnetically induced currents (GICs) in a meridional power transmission line at the Kola Peninsula are analyzed during the intervals of Pc5/Pi3 (frequency range from 1.5 to 5 mHz) pulsation activity observed at the IMAGE magnetometer network. We have analyzed GIC in a transformer at the terminal station Vykhodnoj (68◦N, 33◦E) during the entire year of 2015, near the maximum of 24-th Solar cycle. To quantify the efficiency of GIC generation by a geomagnetic pulsation, a ratio between power spectral densities of GIC and magnetic field variations is introduced. Upon examination of the efficiency of geomagnetic pulsations in GIC generation, the emphasis is given to its dependence on frequency and spatial scale. To estimate pulsation spatial scales in latitudinal and longitudinal directions, the triangle of stations KEV-SOD-KIL has been used. Large-scale pulsations along the electric power line (with a high spectral coherence, low phase difference, and similar amplitudes) are found to be more effective in GIC generation than small-scale pulsations. The accuracy of GIC prediction also depends on the pulsation scale transversal to the electric power line.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Nadezda V Yagova ◽  
Vyacheslav A Pilipenko ◽  
Yaroslav A Sakharov ◽  
Vasily N Selivanov

AbstractGeomagnetically induced currents (GICs) in a quasi-meridional power transmission line on the Kola Peninsula are analyzed during the intervals of Pc5/Pi3 (frequency range from 1.5 to 5 mHz) pulsations recorded at the IMAGE magnetometer network. We have analyzed GIC in a transformer at the terminal station Vykhodnoy ($$68^{\circ }$$ 68 ∘  N, $$33^{\circ }$$ 33 ∘  E) during the entire year of 2015, near the maximum of the 24th Solar cycle. To quantify the efficiency of GIC generation by geomagnetic pulsations, a ratio between power spectral densities of GIC and magnetic field variations is introduced. Upon examination of the geomagnetic pulsation efficiency in GIC generation, the emphasis is given to its dependence on frequency and spatial scale. To estimate pulsation spatial scales in latitudinal and longitudinal directions, the triangle of stations KEV-SOD-KIL has been used. Large-scale pulsations (with a high spectral coherence, low phase difference, and similar amplitudes at latitudinally separated stations) are found to be more effective in GIC generation than small-scale pulsations. The GIC response also depends on the pulsation scale across the electric power line.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2008 ◽  
Vol 38 (5) ◽  
pp. 1260-1266 ◽  
Author(s):  
Erik A. Lilleskov ◽  
Philip M. Wargo ◽  
Kristiina A. Vogt ◽  
Daniel J. Vogt

Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the vitality of red spruce fine roots over a regional acid and N deposition gradient in the northeastern USA. We used root N as an indicator of stand N availability and examined its relationship with the abundance of ectomycorrhizal morphotypes. The dominant morphotypes changed in relative abundance as a function of stand N availability. As root N concentrations increased, Piloderma spp. - like, Cenococcum geophilum Fr., and other unidentified mycorrhizal morphotypes declined in abundance, while other smooth-mantled morphotypes increased. Root N concentration in the 1–2 mm diameter class was the best predictor of the abundance of multiple morphotypes. The morphotype responses were consistent with those found in experimental and small-scale studies, suggesting that N availability is altering ectomycorrhizal communities over broad spatial scales in this region. This finding provides an impetus to conduct a more detailed characterization of mycorrhizal community responses to N deposition across large-scale gradients.


Sign in / Sign up

Export Citation Format

Share Document