scholarly journals Relationship between small-scale catch-per-unit-effort and abundance in New Zealand abalone (pāua, Haliotis iris) fisheries

Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.

2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2019 ◽  
Vol 99 (06) ◽  
pp. 1309-1315
Author(s):  
Edson A. Vieira ◽  
Marília Bueno

AbstractMany studies have already assessed how wave action may affect morphology of intertidal species among sites that vary in wave exposure, but few attempted to look to this issue in smaller scales. Using the most common limpet of the Brazilian coast, Lottia subrugosa, and assuming position on rocky boulders as a proxy for wave action at small scale, we tested the hypothesis that waves may also influence limpet morphology at a smaller spatial scale by investigating how individual size, foot area and shell shape vary between sheltered and exposed boulder sides on three shores in the coast of Ubatuba, Brazil. Limpets consistently showed a proportionally larger foot on exposed boulder sides for all shores, indicating that stronger attachment is an important mechanism to deal with wave action dislodgement at a smaller scale. Shell shape also varied in the scale investigated here, with more conical (dissipative) shells occurring in exposed boulder sides in one exposed shore across time and in the other exposed shore in one year. Shell shape did not vary regarding boulder sides across time in the most sheltered shore. Although we did not assess large spatial scale effects of wave action in this study, variations of the effect of waves at small spatial scale observed for shell shape suggest that it may be modulated by the local wave exposure regime. Our work highlights the importance of wave action at small spatial scales, and may help to understand the ecological variability of limpets inhabiting rocky shores.


2009 ◽  
Vol 60 (12) ◽  
pp. 1273 ◽  
Author(s):  
Siquan Tian ◽  
Yong Chen ◽  
Xinjun Chen ◽  
Liuxiong Xu ◽  
Xiaojie Dai

Spatial scale is an important factor that needs to be considered in data collection and analysis in ecological studies. Studies focusing on the quantitative evaluation of impacts of spatial scales are, however, limited in fisheries. Using the Chinese squid-jigging fishery in the north-western Pacific Ocean as an example, we evaluated impacts of spatial scale used in grouping fisheries and environmental data on the standardisation of fisheries catch per unit effort (CPUE). We developed 18 scenarios of different spatial scales with a combination of three latitudinal levels (0.5°, 1° and 2°) and six longitudinal levels (0.5°, 1°, 2°, 3°, 4° and 5°) to aggregate the data. We then applied generalised additive models to analyse the 18 scenarios of data for the CPUE standardisation, and quantified differences among the scenarios. This study shows that longitudinal and latitudinal spatial scale and size of the spatial area for data aggregation can greatly influence the standardisation of CPUE. We recommend that similar studies be undertaken whenever possible to evaluate the roles of spatial scales and to identify the optimal spatial scale for data aggregations in the standardisation of CPUE and fisheries stock assessment.


2014 ◽  
Vol 11 (1) ◽  
pp. 75-90 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for pCO2 and 2 to 30 μmol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models.


2013 ◽  
Vol 10 (8) ◽  
pp. 13855-13895 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at seasonal time scale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and DIC at seasonal and small-spatial scales is examined using a dataset of surface drifters including ~ 80 000 measurements at high spatio-temporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μ atm for pCO2 and 2 to 30 μ mol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with SST satellite images and local DIC/SST relationships derived from drifters observations. We find that dynamical processes drives the variability of DIC at small spatial scale in most regions of the Southern Ocean, the cascade of large-scale gradients down to small spatial scales leading to gradients up to 15 μ mol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μ mol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifters observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean, which could be used to validate models simulations. We find that small spatial scales structures are a non negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, inter-annual variability, decadal trends) of the carbon budget from low resolution observations and models.


2009 ◽  
Vol 8 (1) ◽  
pp. 68 ◽  
Author(s):  
Gonzalo M Vazquez-Prokopec ◽  
Steven T Stoddard ◽  
Valerie Paz-Soldan ◽  
Amy C Morrison ◽  
John P Elder ◽  
...  

Biologia ◽  
2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Mirela Perić ◽  
Tvrtko Dražina ◽  
Maria Špoljar ◽  
Ines Radanović ◽  
Biserka Primc ◽  
...  

AbstractAiming to establish the most frequent invertebrate taxa in drift at the small spatial scale within a moss-rich karst tufa-precipitating hydrosystem, we sampled drift among microhabitats differing in substratum type and flow conditions along a tufa barrier-cascading lotic reach. Additionally, we addressed the question of the contribution and the potential significance of meiofauna within the overall invertebrate drift at the small spatial scale. During the study period, a total of 60 invertebrate taxa were recorded in the drift. Six of these taxa belonged to the annelid/arthropod meiofauna and they represented 35% of total drift density. Macroinvertebrates found in drift were represented mainly by larval insects. The composition of the most abundant taxa in total drift was as follows: Alona spp. (Cladocera 26.7%), Riolus spp. (Coleoptera: Elmidae 13.2%), Simulium spp. (Diptera: Simuliidae 12.2%), Enchytraeidae (Oligochaeta 10.4%), Hydrachnidia (6.3%), Orthocladinae (Diptera: Chironomidae 3.9%) and Naididae (Oligochaeta 3.6%). Faunal drift densities and amounts of transported particulate matter (PM) were highest at the fast-flowing sites located at the barriers and lowest at the slow-flowing sites within pools. Similarly to the seasonal amounts of transported PM, faunal drift was lowest in winter, and peaked in autumn and in late spring/early summer. Correlation between flow velocity and PM-faunal drift densities suggested a significant effect of the dislodged PM, though a minor influence of discharge and flow velocity on faunal drift. We suggest that the small-scale habitat heterogeneity and the respective feeding and refugial strategies of the fauna, as well as faunal passive dislodgement initiated by the shear forces of the flow were the most important drivers of observed drift patterns.


2001 ◽  
Vol 58 (3) ◽  
pp. 458-469 ◽  
Author(s):  
Olivier Maury ◽  
Didier Gascuel ◽  
Francis Marsac ◽  
Alain Fonteneau ◽  
Anne-Laure De Rosa

Using generalized additive models, we show evidence for nonlinear relationships between various hydrological factors and age-structured catch per unit effort of Atlantic yellowfin tuna (Thunnus albacares) for two fishing fleets. Catchability effects are distinguished from tuna environmental preference effects in the catch per unit effort variability. With respect to catchability, an important nonlinear effect of local fishing effort is highlighted for each fleet. It is interpreted as resulting from a local overfishing phenomenon of adult yellowfin tuna and from vessel fishing tactics (cooperation/spying). The environmental preferences obtained facilitate the interpretation of the hierarchical spatial distribution and age-dependent movements of the yellowfin population. We show that, on a large spatiotemporal scale (the whole ocean), low salinity is a good predictor of yellowfin habitat. Juveniles are mainly distributed in low-salinity waters (<0.035 kg·kg–1) when adults extend their range to waters of 0.036 kg·kg–1. On a mesoscale, adult population annual reproductive transatlantic displacements are probably driven by temperature and salinity gradients to warm and low-salinity locations that are favorable for juveniles. North–south seasonal movements of the population are clearly related to warmwater seasonal oscillations. On a small scale, ocean thermic stability and gradients of sea surface temperature are important physical factors determining yellowfin concentration.


Sign in / Sign up

Export Citation Format

Share Document