scholarly journals Silica cycling in the ultra-oligotrophic Eastern Mediterranean Sea

2014 ◽  
Vol 11 (3) ◽  
pp. 4301-4334
Author(s):  
M. D. Krom ◽  
N. Kress ◽  
K. Fanning

Abstract. Although silica is a key plant nutrient there have been few studies aimed at understanding the Si cycle in the Eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ~ 1 μM, which is unchanging seasonally across the basin was due to the inflow of Western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S. Adriatic area of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in-situ diagenetic weathering of alumina-silicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si year−1 silicic acid and 16 × 109 mol Si year−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si year−1), riverine (27 × 109 mol Si year−1) and subterranean ground water (9.7 × 109 mol Si year−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109 mol Si year−1). This budget shows the importance of rapidly dissolving BSi and in-situ weathering of alumino-silicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.

2014 ◽  
Vol 11 (15) ◽  
pp. 4211-4223 ◽  
Author(s):  
M. D. Krom ◽  
N. Kress ◽  
K. Fanning

Abstract. Although silica is a key plant nutrient, there have been few studies aimed at understanding the Si cycle in the eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ∼1 μM, which is unchanging seasonally across the basin, was due to the inflow of western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S Adriatic are an of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in situ diagenetic weathering of aluminosilicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si yr−1 silicic acid and 16 × 109 mol Si yr−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si yr−1) and riverine (27 × 109 mol Si yr−1) and subterranean groundwater (9.7 × 109 mol Si yr−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109 mol Si yr−1). This budget shows the importance of rapidly dissolving BSi and in situ weathering of aluminosilicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2246
Author(s):  
Georgia Charalampous ◽  
Efsevia Fragkou ◽  
Konstantinos A. Kormas ◽  
Alexandre B. De Menezes ◽  
Paraskevi N. Polymenakou ◽  
...  

The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.


2021 ◽  
Vol 8 ◽  
Author(s):  
Milena Menna ◽  
Riccardo Gerin ◽  
Giulio Notarstefano ◽  
Elena Mauri ◽  
Antonio Bussani ◽  
...  

The circulation of the Eastern Mediterranean Sea is characterized by numerous recurrent or permanent anticyclonic structures, which modulate the pathway of the main currents and the exchange of the water masses in the basin. This work aims to describe the main circulation structures and thermohaline properties of the Eastern Mediterranean with particular focus on two anticyclones, the Pelops and the Cyprus gyres, using in-situ (drifters and Argo floats) and satellite (altimetry) data. The Pelops gyre is involved in the circulation and exchange of Levantine origin surface and intermediate waters and in their flow toward the Ionian and the Adriatic Sea. The Cyprus Gyre presents a marked interannual variability related to the presence/absence of waters of Atlantic origin in its interior. These anticyclones are characterized by double diffusive instability and winter mixing phenomena driven by salty surface waters of Levantine origin. Conditions for the salt finger regime occur steadily and dominantly within the Eastern Mediterranean anticyclones. The winter mixing is usually observed in December–January, characterized by instability conditions in the water column, a gradual deepening of the mixed layer depth and the consequent downward doming of the isohalines. The mixing generally involves the first 200 m of the water column (but occasionally can affect also the intermediate layer) forming a water mass with well-defined thermohaline characteristics. Conditions for salt fingers also occur during mixing events in the layer below the mixed layer.


Zoosymposia ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 121-134
Author(s):  
JAMES A. BLAKE ◽  
PATRICIA A. RAMEY-BALCI

A new spionid polychaete was discovered in deep-sea sediments in the eastern Mediterranean Sea during an expedition by the Ocean Exploration Trust. Specimens were collected by the E/V Nautilus in August 2012 off Turkey, at a depth of 2216 m on the Anaximander Seamount at the Amsterdam mud volcano site. Cores were taken from sediments covered with microbial mats. The new species belongs to the Pygospiopsis-Atherospio Group, which has unusual neuropodial hooks, modified neurosetae in some anterior setigers, and branchiae in middle body segments that are broad, flattened, and fused to the dorsal lamellae. The new species is assigned to a new genus and species, Aciculaspio anaximanderi n. gen., n. sp., and is unusual in having a reduced setiger 1 lacking notosetae; well-developed pre- and postsetal lamellae that encompass the neurosetae and notosetae; notopodial lamellae free from the branchiae in anterior setigers that become fused and flattened in middle and posterior segments; unidentate hooded hooks in both noto- and neuropodia; neuropodial spines in setigers 4–10; and a pygidium with three anal cirri. Aciculaspio anaximanderi n. gen., n. sp. is the first species in the Atherospio-Pygospiopsis Group collected from a deep-water cold seep habitat.


1993 ◽  
Vol 115 (2) ◽  
pp. 331-338 ◽  
Author(s):  
H. Hornung ◽  
M. D. Krom ◽  
Y. Cohen ◽  
M. Bernhard

Sign in / Sign up

Export Citation Format

Share Document