scholarly journals Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2246
Author(s):  
Georgia Charalampous ◽  
Efsevia Fragkou ◽  
Konstantinos A. Kormas ◽  
Alexandre B. De Menezes ◽  
Paraskevi N. Polymenakou ◽  
...  

The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.

2012 ◽  
Vol 9 (12) ◽  
pp. 19165-19197 ◽  
Author(s):  
C. Theodosi ◽  
C. Parinos ◽  
A. Gogou ◽  
A. Kokotos ◽  
S. Stavrakakis ◽  
...  

Abstract. To assess sources and major processes controlling vertical transport of both anthropogenic and natural chemical species in deep basins of the Eastern Mediterranean Sea (SE Ionian Sea, Nestor site), we performed chemical characterization (elemental carbon, major and trace metals and polycyclic aromatic hydrocarbons) of marine sinking particles. Sediment traps were deployed at five successive depths, 700 m, 1200 m, 2000 m, 3200 m and 4300 m from the sea surface, during the period of May 2007 to October 2008. Fluxes of all measured species exhibited minimum values from January to March 2008 and maximum from April to September 2008, with an evident covariance revealing a common and rapid vertical transport mechanism from 700 m down to 4300 m depth. Crustal matter flux from atmospheric deposition plays an important role in the temporal variability of particulate matter with significant contribution from biogenic constituents namely the seasonal succession in the export of planktonic biomass, expressed by particulate organic carbon (POC), carbonates and biogenic Si fluxes (Stavrakakis et al., 2012). Tracers (elemental carbon, retene) of the devastating forest fires occurred in August 2007 in southern Greece, were detected at sediment trap material in all depths with a delay of 15 days at 4300 m, indicating a rapid and well-coupled transport of sinking particulate material between the sea-surface and deep layers of the Eastern Mediterranean Sea. Lateral inputs of pollutants at the deepest trap (4300 m) are probably of importance, due to the influence of deep Adriatic water at the study site.


2021 ◽  
Vol 8 ◽  
Author(s):  
Milena Menna ◽  
Riccardo Gerin ◽  
Giulio Notarstefano ◽  
Elena Mauri ◽  
Antonio Bussani ◽  
...  

The circulation of the Eastern Mediterranean Sea is characterized by numerous recurrent or permanent anticyclonic structures, which modulate the pathway of the main currents and the exchange of the water masses in the basin. This work aims to describe the main circulation structures and thermohaline properties of the Eastern Mediterranean with particular focus on two anticyclones, the Pelops and the Cyprus gyres, using in-situ (drifters and Argo floats) and satellite (altimetry) data. The Pelops gyre is involved in the circulation and exchange of Levantine origin surface and intermediate waters and in their flow toward the Ionian and the Adriatic Sea. The Cyprus Gyre presents a marked interannual variability related to the presence/absence of waters of Atlantic origin in its interior. These anticyclones are characterized by double diffusive instability and winter mixing phenomena driven by salty surface waters of Levantine origin. Conditions for the salt finger regime occur steadily and dominantly within the Eastern Mediterranean anticyclones. The winter mixing is usually observed in December–January, characterized by instability conditions in the water column, a gradual deepening of the mixed layer depth and the consequent downward doming of the isohalines. The mixing generally involves the first 200 m of the water column (but occasionally can affect also the intermediate layer) forming a water mass with well-defined thermohaline characteristics. Conditions for salt fingers also occur during mixing events in the layer below the mixed layer.


2015 ◽  
Vol 206 ◽  
pp. 390-399 ◽  
Author(s):  
Tiago M. Alves ◽  
Eleni Kokinou ◽  
George Zodiatis ◽  
Robin Lardner ◽  
Costas Panagiotakis ◽  
...  

2014 ◽  
Vol 11 (15) ◽  
pp. 4211-4223 ◽  
Author(s):  
M. D. Krom ◽  
N. Kress ◽  
K. Fanning

Abstract. Although silica is a key plant nutrient, there have been few studies aimed at understanding the Si cycle in the eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ∼1 μM, which is unchanging seasonally across the basin, was due to the inflow of western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S Adriatic are an of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in situ diagenetic weathering of aluminosilicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si yr−1 silicic acid and 16 × 109 mol Si yr−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si yr−1) and riverine (27 × 109 mol Si yr−1) and subterranean groundwater (9.7 × 109 mol Si yr−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109 mol Si yr−1). This budget shows the importance of rapidly dissolving BSi and in situ weathering of aluminosilicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.


Sign in / Sign up

Export Citation Format

Share Document