scholarly journals Steady-state solutions for subsurface chlorophyll maximum in stratified water columns with a bell-shape vertical profile of chlorophyll

2014 ◽  
Vol 11 (6) ◽  
pp. 9511-9538
Author(s):  
X. Gong ◽  
J. Shi ◽  
H. W. Gao ◽  
X. H. Yao

Abstract. A bell-shape vertical profile of chlorophyll a (Chl a) concentration, conventionally referred as Subsurface Chlorophyll Maximum (SCM) phenomenon, has frequently been observed in stratified oceans and lakes. This profile is assumed to be a general Gaussian distribution in this study. By substituting the general Gaussian function into ecosystem dynamical equations, the steady-state solutions for SCM characteristics (i.e. SCM layer depth, thickness, and intensity) in various scenarios are derived. These solutions indicate that: (1) The maximum in Chl a concentrations occurs at or below the depth with the maximum in growth rates of phytoplankton locating at the transition from nutrient limitation to light limitation, and the depth of SCM layer deepens logarithmically with an increase in surface light intensity; (2) The shape of SCM layer (thickness and intensity) is mainly influenced by nutrient supply, but independence of surface light intensity; (3) The intensity of SCM layer is proportional to the diffusive flux of nutrient from below, getting stronger as a result of this layer being shrank by a higher light attenuation coefficient or a larger sinking velocity of phytoplankton. The analytical solutions can be useful to estimate environmental parameters difficultly obtained from on-site observations.

2015 ◽  
Vol 12 (4) ◽  
pp. 905-919 ◽  
Author(s):  
X. Gong ◽  
J. Shi ◽  
H. W. Gao ◽  
X. H. Yao

Abstract. A bell-shaped vertical profile of chlorophyll a (Chl a) concentration, conventionally referred to as a subsurface chlorophyll maximum (SCM) phenomenon, has frequently been observed in stratified oceans and lakes. This profile is assumed to be a general Gaussian distribution in this study. By substituting the general Gaussian function into ecosystem dynamical equations, the steady-state solutions for SCM characteristics (i.e., SCM layer depth, thickness, and intensity) in various scenarios are derived. These solutions indicate that (1) the maximum concentration of Chl a occurs at or below the depth of maximum growth rates of phytoplankton located at the transition from nutrient limitation to light limitation, and the depth of SCM layer deepens logarithmically with an increase in surface light intensity; (2) thickness and intensity of the SCM layer are mainly affected by nutrient supply, but independent of surface light intensity; and (3) intensity of the SCM layer is proportional to the diffusive flux of nutrients from below, which becomes stronger as a result of this layer being shrunk by a higher light attenuation coefficient or a larger sinking velocity of phytoplankton. In addition, the limitation and potential application of the analytical solutions are also presented.


2016 ◽  
Author(s):  
Xiang Gong ◽  
Wensheng Jiang ◽  
Linhui Wang ◽  
Huiwang Gao ◽  
Emmanuel Boss ◽  
...  

Abstract. In a stratified water column, the nitracline is a layer where the nitrate concentration increases below the nutrient-depleted upper layer, exhibiting a strong vertical gradient in the euphotic zone. The subsurface chlorophyll maximum layer (SCML) forms near the bottom of euphotic zone, acting as a trap to diminish the upward nutrient supply. Depth and steepness of the nitracline are important measurable parameters related to the vertical transport of nitrate into the euphotic zone. The correlation between the SCML and the nitracline has been widely reported in the literature, but the analytic solution for the relationship between them is not well established. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions for the system of phytoplankton and nutrient. The analytical solution shows that the nitracline depth is deeper than the depth of SCML, shoaling with an increase in light attenuation coefficient and with a decrease in surface light intensity. The inverse proportional relationship between the light level at the nitracline depth and the maximum rate of new primary production is derived, suggesting that the light level at the nitracline can be used as an indicator for integrated new primary production. Analytic solutions also show that a thinner SCML corresponds to a steeper nitracline. The nitracline steepness is positively related to light attenuation coefficient, but independent of surface light intensity. The derived equations of the nitracline in relation to the SCML provide further insight into the important role of the nitracline in marine pelagic ecosystems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248715
Author(s):  
Ying Chen ◽  
Hui Zhao

Based on the biological, nutrients and hydrological data in August 2018, the vertical chlorophyll a (Chl-a) concentration profiles and the relationship among surface Chl-a (Chl-a(0)) concentration, maximum Chl-a (Chl-a(m)) concentration and depth-integrated Chl-a (Chl-a(int)) concentration were studied in the Northern South China Sea (NSCS). The results indicate that there are 4 different patterns in the vertical Chl-a profiles in the NSCS: (i) Chl-a increases with depth from the surface (e.g. station 1); (ii) there exists subsurface chlorophyll maximum (SCM), with low Chl-a on the surface and at the bottom layers respectively (e.g. station 5); (iii) there is no SCM, only with high Chl-a on the surface and in the bottom (e.g. station 14); (iv) the 4th pattern is similar to (ii), with the higher Chl-a(0) (e.g. station 28). The SCM is observed at 95% stations in the NSCS and is not detected only at a few stations near the Pearl River (PR) estuary. These patterns are mainly regulated by alternative limitation of nutrients and light from the surface to the bottom of euphotic layer. For the pattern 1 (e.g. station 1), light is not a limited factor, and Chl-a and nutrients increase with depth. The pattern 2 (e.g. station 5) exists with the limitation of surface nutrients in offshore region. The nutrients increases with depth and the nutrients limitation turns to light limitation gradually from surface to bottom. And the SCM appears in the layer which need of the light and nutrients is roughly equivalent. Compared with that the offshore SCM, the nutrients for the pattern 3 (e.g. station 14) are rich on the surface with nutrients concentration and light irradiance. Therefore, it is seawater intrusion from the bottom that brings the higher nutrients concentration. The reason for the high Chl-a(0) on the pattern 4 (e.g. station 28) is terrestrial matter from the nearshore. High correlation (R2 = 0.5206, p<0.01) between the depth of SCM (Depth(m)) and Chl-a(0) indicates that the SCM depth is regulated by light masking effect of surface phytoplankton, generally with shallow nutriclines and fast light attenuation for high Chl-a(0) and vice versa low Chl-a(0) brings deeper nutriclines and light attenuate slowly with less shading effect. Further research results shows that Chl-a(int) and Chl-a(m) have a good correlation(R2 = 0.6397, p<0.01). However, the correlation between Chl-a(int) and Chl-a(0) is relative weak (R2 = 0.3202, p<0.01). That could be attributed to the availability of nutrients playing an important role in growth of phytoplankton, with high nutrients at upper euphotic layers for the stations with high Chl-a(0).


2017 ◽  
Vol 14 (9) ◽  
pp. 2371-2386 ◽  
Author(s):  
Xiang Gong ◽  
Wensheng Jiang ◽  
Linhui Wang ◽  
Huiwang Gao ◽  
Emmanuel Boss ◽  
...  

Abstract. In a stratified water column, the nitracline is a layer where the nitrate concentration increases below the nutrient-depleted upper layer, exhibiting a strong vertical gradient in the euphotic zone. The subsurface chlorophyll maximum layer (SCML) forms near the bottom of the euphotic zone, acting as a trap to diminish the upward nutrient supply. Depth and steepness of the nitracline are important measurable parameters related to the vertical transport of nitrate into the euphotic zone. The correlation between the SCML and the nitracline has been widely reported in the literature, but the analytic solution for the relationship between them is not well established. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. The model is well suited to explain basic dependencies between a nitracline and an SCML. The analytical solution shows that the nitracline depth is deeper than the depth of the SCML, shoaling with an increase in the light attenuation coefficient and with a decrease in surface light intensity. The inverse proportional relationship between the light level at the nitracline depth and the maximum rate of new primary production is derived. Analytic solutions also show that a thinner SCML corresponds to a steeper nitracline. The nitracline steepness is positively related to the light attenuation coefficient but independent of surface light intensity. The derived equations of the nitracline in relation to the SCML provide further insight into the important role of the nitracline in marine pelagic ecosystems.


2020 ◽  
Vol 15 (1) ◽  
pp. 359-362
Author(s):  
Nicholas J. Hawco ◽  
Feixue Fu ◽  
Nina Yang ◽  
David A. Hutchins ◽  
Seth G. John

AbstractThroughout the open ocean, a minimum in dissolved iron concentration (dFe) overlaps with the deep chlorophyll maximum (DCM), which marks the lower limit of the euphotic zone. Maximizing light capture in these dim waters is expected to require upregulation of Fe-bearing photosystems, further depleting dFe and possibly leading to co-limitation by both iron and light. However, this effect has not been quantified for important phytoplankton groups like Prochlorococcus, which contributes most of the productivity in the oligotrophic DCM. Here, we present culture experiments with Prochlorococcus strain MIT1214, a member of the Low Light 1 ecotype isolated from the DCM in the North Pacific subtropical gyre. Under a matrix of iron and irradiance matching those found at the DCM, the ratio of Fe to carbon in Prochlorococcus MIT1214 cells ranged from 10–40 × 10−6 mol Fe:mol C and increased with light intensity and growth rate. These results challenge theoretical models predicting highest Fe:C at lowest light intensity, and are best explained by a large photosynthetic Fe demand that is not downregulated at higher light. To sustain primary production in the DCM with the rigid Fe requirements of low-light-adapted Prochlorococcus, dFe must be recycled rapidly and at high efficiency.


2020 ◽  
Author(s):  
Elena A. Kubryakova ◽  
Arseny A. Kubryakov

Abstract. Winter vertical entrainment of deep waters determines not only the amount of nutrients in the upper layers, but also the light conditions in it, through the self-shading mechanism. In this paper, we use Bio-Argo data to demonstrate significant differences in the vertical distribution of chlorophyll-a concentration (Chl) in the Black Sea between a year with cold winter (2017) and a year with warm winter (2016). Stronger vertical entrainment of nutrient-rich waters from deeper isopycnal layers in cold 2017 caused an increase of Chl in winter up to 0.6–0.7 mg/m3 compared to a warm winter of 2016, when Chl was only 0.4–0.5 mg/m3. Further, during almost the whole year from February to October Chl in the upper 0–40 m layer of cold 2017 year was on 0.1–0.2 mg/m3 higher than in 2016. This rise of Chl in 2017 led to an increase in light attenuation due to the self-shading effect. In contrast, in warm 2016 with a lower amount of nutrients light attenuation decreased and the irradiance reached deeper isopycnals layers with a higher amount of nutrients. As a result, in warm 2016 the subsurface chlorophyll maximum deepens and the values of Chl in 40–60 m layers were significantly higher than in 2017. The maximum positive difference in this layer (0.5 mg/m3) was observed during a summer seasonal peak of irradiance due to the largest increase of light attenuation in the summer of 2017. As a result, the column-averaged yearly values of Chl in warm 2016 and cold 2017 were comparable. However, in the year with intense winter mixing upper layers are more productive, while in the year with low winter vertical mixing, subsurface chlorophyll maximum widens and reaches deeper layers. These results show that the observed long-term warming may lead to the continuous deepening of the subsurface chlorophyll maximum in the ocean.


Sign in / Sign up

Export Citation Format

Share Document