scholarly journals Coastal hypoxia and sediment biogeochemistry

2009 ◽  
Vol 6 (2) ◽  
pp. 3655-3706 ◽  
Author(s):  
J. J. Middelburg ◽  
L. A. Levin

Abstract. The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.

2009 ◽  
Vol 6 (7) ◽  
pp. 1273-1293 ◽  
Author(s):  
J. J. Middelburg ◽  
L. A. Levin

Abstract. The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification), there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis) with consequences for coastal ecosystem dynamics.


2015 ◽  
Vol 12 (4) ◽  
pp. 1169-1189 ◽  
Author(s):  
J. Schönfeld ◽  
W. Kuhnt ◽  
Z. Erdem ◽  
S. Flögel ◽  
N. Glock ◽  
...  

Abstract. Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of < 7 μmol kg−1 under the Peruvian upwelling and < 5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at > 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.


2014 ◽  
Vol 11 (9) ◽  
pp. 13343-13387 ◽  
Author(s):  
J. Schönfeld ◽  
W. Kuhnt ◽  
Z. Erdem ◽  
S. Flögel ◽  
N. Glock ◽  
...  

Abstract. Present day oceans are generally well ventilated except mid-depth oxygen minimum zones (OMZs) under high surface water productivity regimes, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or even anoxic. In particular the Cretaceous Ocean Anoxic Events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossil assemblages preserved in the sedimentary record. Yet both, qualitative and quantitative assessments of intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life are well known. Their implications for constraining past bottom-water oxygenation are addressed in this review, with emphasis on comparing OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the Atlantic NW African shelf. Holocene laminated sediments were encountered at bottom-water oxygen levels of <7 μmol kg−1 under the Peruvian upwelling and <5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Changes of sediment input on seasonal to decadal time scales are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae in sediment cores. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. This ichnogenus has not been reported from Peruvian sediments but cm-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated sections of OAE 2 in the Tarfaya Basin, Morocco, matching late Holocene accumulation rates of the majority of laminated Peruvian sediment cores under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at >10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of paleo-oxygenation under suboxic conditions. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.


Author(s):  
Simon F. Thrush ◽  
Judi E. Hewitt ◽  
Conrad A. Pilditch ◽  
Alf Norkko

This chapter describes various aspects of how we can define ecosystem function and situations ecosystem function in a continuum from ecosystem processes to services. Illustrating that functions are about connections, the chapter uses examples of productivity, organic matter decomposition, ecosystem metabolism, habitat creation and foodwebs. Changes in the contributions of function to ecosystem dynamics are considered. Sedimentary ecosystems are multifunctional, requiring the development of new methods to assess this aspect of sediments and trait-based approaches are discussed. The role of ecosystem functions in underpinning ecosystem services is described to ensure that valuation and mapping exercises do not lose sight of the foundational role of ecosystem functions.


2012 ◽  
Vol 9 (5) ◽  
pp. 1633-1646 ◽  
Author(s):  
M. Alkhatib ◽  
M. F. Lehmann ◽  
P. A. del Giorgio

Abstract. The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. N isotope effects on the water column associated with the benthic exchange of nitrate (εapp) and TDN (εsed) during benthic nitrification-denitrification coupling were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net fixed N loss was barely expressed at the scale of sediment-water exchange, with &amp;varepsilon;app values <3‰. The strongest under-expression (i.e. lowest εapp) of the biological N isotope fractionation was observed at the most oxygenated sites with the least reactive organic matter, indicating that, through their control on the depth of the denitrification zone, bottom water oxygen concentrations and the organic matter reactivity can modulate εapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of εsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly elevate εsed above εapp. Calculated εsed values were within the range of 4.6 ± 2‰ and were related to organic matter reactivity and oxygen penetration depth in the sediments. &amp;varepsilon;sed reflects the δ15N of the N2 lost from marine sediments and thus best describes the isotopic impact of fixed N loss from sediments on the oceanic fixed N pool. Our mean value for εsed is larger than assumed by earlier work, questioning current ideas with regards to the state of balance of the modern N budget.


2014 ◽  
Vol 74 (2) ◽  
pp. 408-419 ◽  
Author(s):  
RA. Zerlin ◽  
R. Henry

Benthic macro-invertebrates are important components of freshwater ecosystems which are involved in ecological processes such as energy transfer between detritus and consumers and organic matter recycling. The aim of this work was to investigate the variation in organism richness, diversity and density of benthic fauna during the annual cycle in Camargo Lake, a lake marginal to Paranapanema River, southeast Brazil. The correlation of environmental factors with community attributes of the macro-benthic fauna was assessed. Since Camargo Lake is connected to the river, we tested the hypothesis that water level variation is the main regulating factor of environmental variables and of the composition and abundance of benthic macro-invertebrates. The results indicated that lake depth varied with rainfall, being the highest at the end of the rising water period and the lowest at the beginning of this period. The sediment granulometry was more heterogeneous at the bottom of the lake by the end of the high water period. The benthic macro-invertebrate fauna was composed by 15 taxa. The Diptera order was represented by seven taxa and had greater richness in relation to other taxa. This group was responsible for 60% of the total abundance of organisms, followed by Ephemeroptera (22%) and Anellida (16%). Significant differences were observed over time in total richness and, in density of Narapa bonettoi, Chaoborus, Ablabesmyia gr. annulata, Chironomus gigas, Larsia fittkau, and Procladius sp. 2. Total taxa richness correlated negatively with water pH, transparency, conductivity, and bottom water oxygen. Higher positive correlations were found between the densities of some taxa and bottom water oxygen, conductivity and very fine sand, silt + clay of sediment, while negative correlations were recorded with organic matter, and fine, medium and coarse sand, bottom water temperature, mean temperature and rainfall. The significant temporal difference in water level was associated with changes in abiotic factors and macro-invertebrate community attributes.


2000 ◽  
Vol 47 ◽  
pp. 53-61
Author(s):  
Niels H. Schovsbo

The Scandinavian Alum Shale Formation (Middle Cambrian to Lower Ordovician) was deposited under generally low bottom water oxygen levels. In the formation there is a covariance between faunal composition and the level of trace element enrichment caused by their mutual dependence upon changes in the bottom water oxygen levels. A detailed profile of the V/(V+Ni) ratio through the Upper Cambrian Olenus Zone in the Gislövshammar-2 core, Scania, Sweden, is described. Environmental information from this zone is particularly relevant since the Olenus species in the zone apparently undergo iterative changes in morphology that may be linked to environmental changes. Moreover, the occurrences of Olenus species and Homagnostus obesus are almost mutually exclusive. The results indicate that the trilobitic intervals coincide with increases in oxygen levels as monitored by the V/(V+Ni) ratio. Peak oxygen levels do not appear at the base of each interval, suggesting that colonisation of the sea-floor took place when the oxygenation level reached a certain threshold but before maximum oxygen levels were reached. The distribution patterns of Olenus and Homagnostus are interpreted as reflecting differences in substrate preference since samples containing Homagnostus have statistically significantly higher TOC levels. The V/(V+Ni) variations in the Olenus bearing intervals suggest that oxygen levels fluctuated more than would be expected from morphological changes apparent in the Olenusspecies.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kentaro Izumi ◽  
Yuki Haneda ◽  
Yusuke Suganuma ◽  
Makoto Okada ◽  
Yoshimi Kubota ◽  
...  

AbstractThe Chiba composite section (CbCS) in the Kokumoto Formation, Kazusa Group, central Japan is a thick and continuous marine succession that straddles the Lower–Middle Pleistocene boundary and the well-recognized Matuyama–Brunhes paleomagnetic polarity boundary. Although recent studies extensively investigated the CbCS, its chemostratigraphy, particularly around the Lower–Middle Pleistocene boundary, is poorly understood. Therefore, in this study, we performed multiproxy sedimentological and geochemical analyses of the CbCS, including the Chiba section, which is the Global Boundary Stratotype Section and Point for defining the base of the Middle Pleistocene Subseries. The aim of these analyses is to establish the high-resolution chemostratigraphy and to reconstruct the paleoenvironments of its sedimentary basin in detail. We used the K/Ti ratio as a broad proxy for the clastic material grain size of the sediments. Although the K/Ti ratio generally varies throughout the studied interval, the K/Ti ratio especially during Marine Isotope Stage (MIS) 19a shows a variation pattern like those of the foraminiferal oxygen isotope (δ18O) records. The records of the C/N ratio of bulk samples and carbon isotope ratio of the organic carbon (δ13Corg) suggest that the organic matter in the CbCS sediments during MIS 19c mostly originated from marine plankton, whereas the organic matter during MIS 18 and 19a was characterized by a mixture of marine plankton and terrestrial plants. These records are clearly indicative of changes in mixing ratio of marine vs. terrestrial organic matter in association with glacial–interglacial cycles from the late MIS 20 to the early MIS 18. In addition, we calculated the mass accumulation rates (MARs) of organic carbon, biogenic carbonate, and terrigenous material for quantitative interpretations on the paleoenvironmental changes. MAR calculations revealed that the contribution of marine organic carbon relative to terrestrial organic carbon increased during MIS 19c, and that the contribution of the terrigenous material relative to biogenic carbonate decreased during MIS 19c. Furthermore, we observed relatively large variations in the total organic carbon and total nitrogen contents during MIS 19a. These variations were probably caused by the relative decrease in bottom-water oxygen level, which is also supported by our trace-fossil data, although it is not certain whether the increase in organic-carbon flux at ~ 760 ka was due to the synchronous increase in biogenic productivity in surface water. Such a relative decrease in bottom-water oxygen level was partly due to the increased ocean stratification because of the northward displacement of the Kuroshio Extension Front.


Sign in / Sign up

Export Citation Format

Share Document